Leafhopper, *Jacobiasca lybica* (Bergevin And Zanon) (Hemiptera: Cicadellidae) On Okra Plants And Associated Parasitoids

Hendawy A. S. ¹, S. K. El-Fakharany¹ And F. H. Hegazy²
1-Plant Protection Research Institute, Agric. Res. Center, Egypt.
2-Plant Protection Department, Faculty of Agriculture, Tanta University, Egypt.

ARTICLE INFO

Article History
Received: 13/10/2017
Accepted: 13/11/2017

Keywords:
leafhopper, *Jacobiasca lybica*, Okra plants, parasitoids

ABSTRACT
The current study was conducted in 2016 at two locations; Sakha and El-Riad, Kafr El-Sheikh governorate. Okra plants were sown at rice borders, canals and dikes at Sakha Agricultural Research Station, and as a solid crop at El-Riad in an area of 1000 m². At both locations, okra plants were naturally infested by the leafhopper, *Jacobiasca lybica* (Bergevin and Zanon) (Hemiptera: Cicadellidae). To determine the parasitoids associated with the leafhopper, okra leaves having the eggs and nymphs of the leafhopper were picked up. The eggs and nymphs were excluded and incubated into petri dishes to be monitored for the possible emergence of parasitoids. One leafhopper nymph, collected from okra in rice fields, was found to be parasitized by *Aphelopus* sp. (Dryinidae: Hymenoptera). The leafhopper eggs collected from okra in rice fields or solid okra, hatched for four egg parasitoids. Three species; *Anagrus* spp., *Anagrus atomus* L., *Stethynium* sp. are belong to Mymaridae, and one parasitoid, *Oligosita* sp. belong to Tricogrammatidae. *Anagrus* parasitoids were the most abundant, while other parasitoids were found in low populations. To study the population fluctuations of the leafhopper adults and associated parasitoid, *Anagrus* spp., yellow sticky traps were fixed close to okra plants at both locations. *J. lybica* exhibited three peaks of occurrence at each location, while the parasitoid exhibited three peaks on okra surrounding rice fields, and two peaks on solid okra. It was concluded that okra plants in rice fields received higher numbers of parasitoids than solid okra.

INTRODUCTION

Among vegetable crops cultivated in Egypt, okra (*Abelmoschus esculentus* L. Moench), which is a popular summer crop. The cultivated area in Egypt with okra was nearly 17,000 feddans that produced about 97,000 tons in 2012 cropping season (EMARS, 2013). It is a rich source of nutrients, including fibers and vitamins (Moyin-Jesu, 2007). The most widely produced okra cultivars in Egypt are known as Balady (Ibrahim, et al 2013). Insect pests are one of the main limiting factors for vegetable production (Satti and Nasr 2008). The major okra pests are insect sucking pests (Satti and Nasr 2008, Abdel Hamed, et al 2011 and El-Fakharany, 2016), leafhopper, *Jacobiasca lybica* (*Empoasca lybica*), is an important insect pest.
Parasitoids; Mymaridae, Trichogrammatidae and Dryinidae were detected at variable levels, attacking mainly *J. lybica* on many host plants (Klerks and van Lenteren, 1991). Several leafhopper parasitoid species (Hymenoptera: Mymaridae, Trichogrammatidae and Dryinidae) have been experienced for their usefulness as biological control agents based on population growth rates, searching capacity and host preferences (Habib, *et al.* 1972 and Cooper, 1993).

The genus *Anagrus* Haliday (Hymenoptera: Mymaridae) is one of cosmopolitan species, of Mymaridae, with 86 valid species described. Identification of *Anagrus* species is difficult because of their very small size. Thus, most of the earlier identifications require confirmation (Triapitsyn, 2015). The genus *Oligosita* have diverse egg parasitoids with about 94 described species (Ikram and Yousuf, 2016) and *Oligosita* is associated with many host leafhopper species (Virla, 2000 and Hayat, 2008.). The genus *Oligosita* Walker (Hymenoptera: Trichogrammatidae), as defined by Pinto and Viggiani (2004), contains 92 world species (Noyes, 2014) and 2 species from Egypt (Kryger, 1932 and Hendawy, 2001)

This genus has important egg parasitoids attacking Cicadellid insect pests (Hayat, 2008).

The mymarid, *Stethynium triclavatum* Enock, recorded of the Egyptian fauna (Triapitsyn 2002), was found attacking cicadellids (Huber, 1987, Noyes, 2002).

Guglielmino, *et al.* 2013 mentioned that the dryinid parasitoid, *Aphelopus wittei* Benoit in north Sudan parasitized *J. lybica*.

The current study was undertaken throughout 2016 at the Experimental Farm and Laboratory of Entomology Department of Rice Research and Training Center (RRTC) and at El-Riad destrect, Kafr El-Sheikh Governorate to survey and monitor the population fluctuations of okra leafhopper, *J. lybica* and associated parasitoids.

MATERIALS AND METHODS

Survey and seasonal abundance of hopper natural enemies were carried out during summer season, 2016 at the Experimental Farm of Rice Research and Training Center (RRTC), and at El-Riad District.

1. **Parasitoids of okra leafhopper, *Jacobiasca lybica***:

 Okra leaves infested with *J. lybica* eggs were picked up in 2016 from the plants having the identical symptoms. The leafhopper eggs and nymphs were collected and kept into moistened petri dishes till the emergence of parasitoids. Eggs and nymphs of hoppers were collected and kept into Petri dishes lined with moistened filter papers and supplied with cuttings of okra plants for feeding nymphs. Parasitoids emerging from immatures were confined in 70 % ethyl alcohol. The parasitoids were counted and identified. Percentages of collected parasitoids were calculated throughout 15 May-27 November, 2016.

2. **Population fluctuation of okra leafhopper, *Jacobiasca lybica* and their parasitoids:**

 Population fluctuations of the leafhopper, *J. lybica* and its egg-parasitoids were monitored using, 10 yellow sticky traps (21 x 29.5 cm) coated with a sticky material. Traps were fixed on a wooden pole with changeable heights equivalent to heights of okra plants during different growth stages. Traps were used for trapping *J. lybica* adults, and the egg-parasitoids, *Anagrus* sp. and *Oligosita* sp. Weekly samples were collected, examined and counted from Sakha and El-Riad Districts locations, Kafr El-Sheikh governorate. Insects that are attracted to this yellowish device include
important crop pests such as planthoppers and leafhoppers (Riley and Schuster, 1994, Reddy and Rajan, 2016 and Sen, et al 2016).

3. Parasitoid Identification:
Parasitoids were identified by the first author of the current study. The mymarid egg parasitoids, were identified according to Triapitsyn (2002), Huber, et al (2009) and Triapitsyn (2015) and dryinid parasitoid, *Aphelopus* sp. was identified according to Olmi (1984). *Oligosita* sp. was identified according to Doutt and Viggiani (1968). The parasitoids were mounted on glass slides and deposited in the personal collection of the first author at Biological Control Department, Rice Research and Training Center (RRTC), Kafr El-Sheikh, Egypt.

RESULTS AND DISCUSSION

1. Parasitoids of okra leafhopper, *Jacobiasca lybica*:

Data in Table (1) showed that 6 species of hymenopterous parasitoids belonging to 3 families were recorded (Fig. 1). These parasitoids could be divided into two groups. The first is egg parasitoids (5 species from 2 families), three Mymaridae (*Anagrus atomus* L., *Anagrus* sp. and *Stethynium* sp.), and two Trichogrammatidae (*Oligosita* sp.1 and *Oligosita* sp. 2). Parasitoids of *Anagrus* are the most abundant in the two locations. The second is nymphal parasitoid (1 species (*Aphelopus* sp.) belonging to family, Dryinidae). Hendawy (2001) recorded five hymenopterous species of egg-parasitoids attacking rice leafhoppers and planthoppers. *Anagrus* was studied in the Egyptian fauna by Soyka, 1950, Hendawy, 2001, Triapitsyn, 2004 and Shalaby and Hendawy 2007. Triapitsyn 2002, recorded *Stethynium triclavatum* Enock from Egypt. The dryinid parasitoid, *Aphelopus wittei* Benoit parasitized *J. lybica* in Sudan (Guglielmino, et al. 2013).

Table 1. Percent of hymenopterous parasitoids emerged from eggs and nymphs of *Jacobiasca lybica*, during okra season, 2016 at Sakha and El-Riad locations, Kafr El-Sheikh Governorate.

<table>
<thead>
<tr>
<th>Parasitoid</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sakha</td>
</tr>
<tr>
<td>Anagrus atomus L.</td>
<td>194 (44.80%)</td>
</tr>
<tr>
<td>Anagrus sp.</td>
<td>126 (29.10%)</td>
</tr>
<tr>
<td>Stethynium sp.</td>
<td>4 (0.92%)</td>
</tr>
<tr>
<td>Oligosita sp. 1</td>
<td>93(21.48)</td>
</tr>
<tr>
<td>Oligosita sp. 2</td>
<td>15 (4.46%)</td>
</tr>
<tr>
<td>Aphelopus sp.</td>
<td>1 (0.23%)</td>
</tr>
<tr>
<td>Total</td>
<td>433</td>
</tr>
</tbody>
</table>
2. Population fluctuation of okra leafhopper, *Jacobiasca lybica* and their parasitoids:

Population density of *J. lybica* on okra pants was relatively low, in both locations, up to beginning of June (Table 2). The insect exhibited three peaks of occurrence in each location. The peaks of Sakha location were 68, 149 and 179 adults/10 yellow sticky traps on mid – June, mid – September and first of November, respectively. The corresponding peaks at El-Riad were detected as 46, 89 and 131 adults on mid-July, first of October and first of November, respectively.

On the other hand, *Anagrus* spp. displayed three peaks at Sakha and two peaks at El-Riad with higher population density at the first location than at the second one. A similar situation was found with *Oligosita* spp., as three peaks were caught at Sakha, ranging between 12-43 adults/10 traps, compared to two peaks at El-Riad, 12-14 adults/10 yellow sticky traps.

It is worth mentioning that population density of *Oligosita* spp. was higher than that of *Anagrus* spp. at Sakha location during November. This could be explained that okra plants at Sakha, were surrounded by rice fields, where the parasitoid attacks leaf and plant hopper occurring in rice fields. Egg parasitoids are
the most important natural enemies of leafhoppers (Freytag, 1985). Several species of *Anagrus* are important egg parasitoids of several leafhoppers and planthoppers (Triapitsyn and Beardsley 2000). Genus *Oligosita* attack different host Auchenorrhyncha in various habitats (Pinto and Viggiani 2004).

Table 2. Population fluctuation of *Jacobiasca lybica* adults, and the egg parasitoids, *Anagrus* spp. and *Oligosita* sp. /10 yellow sticky traps in okra plants at two districts; 2016.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sakha El- Riad</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 1</td>
<td>31</td>
<td>6</td>
<td>2</td>
<td>19</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>68</td>
<td>13</td>
<td>5</td>
<td>23</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul. 1</td>
<td>42</td>
<td>26</td>
<td>12</td>
<td>36</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>49</td>
<td>16</td>
<td>3</td>
<td>46</td>
<td>17</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 1</td>
<td>82</td>
<td>23</td>
<td>7</td>
<td>28</td>
<td>26</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>97</td>
<td>37</td>
<td>25</td>
<td>29</td>
<td>16</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 1</td>
<td>101</td>
<td>30</td>
<td>12</td>
<td>61</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>149</td>
<td>34</td>
<td>15</td>
<td>79</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 1</td>
<td>119</td>
<td>45</td>
<td>26</td>
<td>89</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>32</td>
<td>43</td>
<td>75</td>
<td>18</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 1</td>
<td>179</td>
<td>21</td>
<td>35</td>
<td>131</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>118</td>
<td>16</td>
<td>22</td>
<td>96</td>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>109</td>
<td>5</td>
<td>18</td>
<td>75</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1247</td>
<td>308</td>
<td>225</td>
<td>802</td>
<td>200</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

The authors are deeply grateful to Prof. Massimo Olmi of the Tropical Entomology Research Center, Viterbo, Italy and Serguei V. Triapitsyn of the Entomology Research Museum, Dept. of Entomology, Univ. of California, Riverside, California, USA, for providing valuable publications that contributed in identifying parasitoids and preparing the manuscript.

REFERENCES

EMARS (Egyptian Ministry of Agriculture and Reclamation of Soils) 2013. Agricultural Statistics, Second Part, Economic Affairs Sector, Ministry of Agriculture and Land Reclamation, Giza, ARE.

Satti A. A. and O. E. Nasr 2008. Determination of Optimum Dosage Rates of Neem Seed Aqueous Extract for Alleviating Pests and Attaining the Best Yields of
Leafhopper, Jacobiasca lybica on Okra Plants And Associated Parasitoids

Okra and Eggplant. The First African Congress on Pesticides and Toxicology Sciences, 8 November 2008 (A conference organized by the African Network for Chemical Analysis of Pesticides (ANCAP) and University of Gezira (U of G)), Gezira University, Wad Medani/ Sudan.

ARABIC SUMMARY

عـلي نـباتات البامية و الطـفيليات المصاحبة له Jacobiasca lybica

أحمد سمير هنداوي ١٣، ثمان قطب الفخري ١، فاطمة الزهراء حسين حجازي

١- معهد بحوث وقاية النباتات - مركز البحوث الزراعية - مصـر
٢- قسم وقاية النباتات - كلية الزراعة - جامعة طنطا - مـصر

تم إجراء البحث خلال عام ٢٠١٩٤ فنطاقتين بمحافظة كفر الشيخ (محطة البحوث الزراعية بسخا ومنطقة الرقة). في المنطقة الأولى (سخا) زرع البامية على حبوب (فوفنت و بيوت) حول الأرز، ومنطقة الثانية مركز البحوث حيث كانت البامية منزوعة بصورة متفرقة في مساحة ١٠٠٠ متر مربع.

٤- و طفيل واحد يتبع عائلة Hymenoptera: Anagrus sp., Stethynium sp., طفيل البيض المصاحب له Jacobiasca lybica هو أعداد الطفيل من الجنس Anagrus. ودراسة تقنيات التعداد للحشرات الكاملة عن المنطاق

٥- و وضع المصائد الصفراء الأصيلة آسيا لتسجيل Oligosia spp., Anagrus spp. و أعداد الطفيل المصاحب له Jacobiasca lybica كل منها من الأماكن، حيث نشرت الطفيليات في ثلاثة فنطاقتين من سخا ودروتن منطقة. وبكرا أن نباتات البامية المحاطة بحروف الأرز كانت غنية بالطفيليات عنها في حقول البامية المنفردة. وقد غُنَيت أن يعطي ذلك إلى وجود حشرات فنطاقات الأوراق الأخرى بهزة في حقول الأرز، وبالتالي زادت نسبة الطفيليات على نباتات البامية الموجودة على حوالى حقول الأرز.