Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology.

www.eajbs.eg.net
Evaluation Studies of Some Extracted Substances From Date Palm Tissues on Its Attracting Potential of The Red Palm Weevil, *Rhynchophorus ferrugineus* (Olivier) (Coleoptera: Curculionidae)

Eman E. H. El-Rehawy

Plant Protection Research Institute, Agricultural Research Center (ARC), Dokki, Giza, Egypt

mail: emanelrhewy@yahoo.com

ARTICLE INFO

Article History
Received: 14/10/2017
Accepted: 13/11/2017

Keywords: Date palm tree, Red Palm Weevil (RPW), *Rhynchophorus ferrugineus*, Kairomones

ABSTRACT

The red palm weevil, *Rhynchophorus ferrugineus* (Olivier) (Coleoptera: Curculionidae) is the most serious and destructive insect pest for date palm trees. Relative weevil trap attracting potential date palm tissues extracted substances on *R. ferrugineus* was evaluated in date plantations at El-Mansoria village, Giza Governorate, Egypt. Results indicated that the amino acids and indols attracted the adults of red palm weevils more than phenols. Moreover, sugars attracted the least number of adults compared with other substances.

INTRODUCTION

The date palm, *Phoenix dactylifera* L. is a monocotyledonous woody perennial tree belongs to the family: Arecaceae (McCurrach, 1960). The total number of date palm trees recorded in the past ancient time reached about 109 million which yielded 4.2 million metric tons. Arab countries however, contain 78.3% of the total world date palm trees which demonstrate 75% of the production (Abdel-Megeed et al., 2004). The red palm weevil (RPW), *Rhynchophorus ferrugineus* (Olivier) (Coleoptera: Curculionidae) is an economically important invasive tissue-boring pest of various palm species in many parts of the world. Nowadays, the date palm crop in Eastern Arab countries is under threat. This insect was firstly discovered attacking date palm in United Arab Emirates in 1986 and progressively spread to Gulf area and North Africa as the latest record since 1992 in Egypt. RPW is described as a pest of 26 date palm species belonging to 16 different genera (Malumphy and Moran, 2009).

In the field, the male of RPW produces a pheromone which causes the weevils to aggregate on damage trees (Gunawardena and Bandarage, 1995). The larvae can only feed on soft tissue, tree crown, and upper part of the trunk and at the base of petioles. They not only bore into the decaying tissue of dying palm, but can also attack healthy palm. Tunneling and feeding by the larvae enervate the infected trees, which die as a consequence of the build up numerous generations attained by
the insects (Ferry and Gomez, 2002). Infestation is problematic because RPW is
difficult to be detected until the crown of the date palm tree collapse. The infected
trees can die in a few months. The present work was undertaken for evaluation of
efficiency of extracted substances from date palm tree tissues on attracting RPW
adults; male and female, compared to those adults attracted to traps contained ethyl
acetate.

MATERIALS AND METHODS

Trapping adult red palm weevils (RPW):
For trapping, 10 plastic buckets with diameter of the top and bottom were 26
and 20 cm, respectively. Each trap and its led had four equidistant circular openings
(3 cm diameter) to allow weevils' entrance. All traps contained one pheromone
(Ferro-lure: 4-methyl-5-nonanol and 4-methyl-5-nonanone) from Chem. Tica, Int.,
Costa Rica, that was four suspended at the inner side of the lid with a wire near a
bottle contains 40 cm³ of sugar, Indol, Phenol, amino acids, and acetyl acetate as
kairomones. At the bottom of the bucket, two bottles filled with water for humidity
were placed. Traps were buried in the ground to the level of the openings. The
distance between traps was 100 meter at three meter away from the date palm.
Attracted adult weevils from traps were collected and transferred to petri dishes with
wet cheese cloth and sugar cane mulch. Laid eggs were counted daily till the last day
of oviposition period for collected females. Attracted females were collected and
transferred daily.

Date palm tree tissues constitute extraction:
1. Digestion:
Ten grams of tissues of infested date palm trees (Zaghloul, Barhy, and
Samany varieties) were added to 50 cm³ of Hexane. The solution was incubated in
room temperature for 7-10 days for complete digestion. The solution was then
divided into five replicates for further investigation. All experiments were carried at
Central Laboratory for Date Palm Research and Development (C.L.D.P.R.D),
Agricultural Research Center, Giza, Egypt.
2. Extraction:
Phenols were extracted according to the method described by Daniel and
George (1972) and A.O.A.C. (2000). Indoles were extracted according to previously
described Larsen et al. (1962) and Selim et al. (1998). Reducing sugars were
extracted according to method of Lane and Eynon described in A. O. A. A. (1970).
Amino acids were extracted as described by Steinke (1997).
3. Statistical analysis:
Means were tested for significance by the one way analysis of variance
(ANOVA) using Costat Statistics 6.0, release 6.303 software. When the ANOVA
Statistics were significant at \(P \leq 0.01 \), means were compared by the Duncan's
multiple range test using Costat Statistics 6.0.

RESULTS AND DISCUSSION
Data presented in Table (1) showed that the effect of extracted sugar, Indol,
Phenol, and amino acids from date palm tissues and acetyl acetate as kairomones on
number of laid eggs/female that was collected from traps. Results showed that the
highest number of laid eggs was obtained from females attracted to traps contained amino acids followed by acetyl acetate traps. Results also showed that lowest number of laid eggs/female was obtained from phenols traps. The obtained results was harmony with Abraham et al. (2001) which found that the average life of female captured was three months and the number of eggs laid was 320 eggs. Similar results were obtained by Abbas (2005).

Table (1): Number of laid eggs/female attracted to traps contained extracted substances from date palm tree tissues and acetyl acetate.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sugars</th>
<th>Indols</th>
<th>Phenols</th>
<th>Amino acids</th>
<th>Acetyl acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>124</td>
<td>102</td>
<td>12</td>
<td>199</td>
<td>284</td>
</tr>
<tr>
<td>April</td>
<td>105</td>
<td>216</td>
<td>26</td>
<td>224</td>
<td>215</td>
</tr>
<tr>
<td>May</td>
<td>101</td>
<td>202</td>
<td>22</td>
<td>209</td>
<td>254</td>
</tr>
<tr>
<td>June</td>
<td>124</td>
<td>213</td>
<td>24</td>
<td>244</td>
<td>212</td>
</tr>
<tr>
<td>July</td>
<td>112</td>
<td>206</td>
<td>20</td>
<td>203</td>
<td>204</td>
</tr>
<tr>
<td>August</td>
<td>195</td>
<td>107</td>
<td>30</td>
<td>195</td>
<td>223</td>
</tr>
<tr>
<td>September</td>
<td>174</td>
<td>154</td>
<td>22</td>
<td>190</td>
<td>205</td>
</tr>
<tr>
<td>October</td>
<td>185</td>
<td>201</td>
<td>26</td>
<td>205</td>
<td>195</td>
</tr>
<tr>
<td>November</td>
<td>148</td>
<td>250</td>
<td>18</td>
<td>278</td>
<td>155</td>
</tr>
<tr>
<td>December</td>
<td>154</td>
<td>246</td>
<td>14</td>
<td>274</td>
<td>250</td>
</tr>
<tr>
<td>January</td>
<td>143</td>
<td>215</td>
<td>22</td>
<td>250</td>
<td>270</td>
</tr>
<tr>
<td>February</td>
<td>175</td>
<td>234</td>
<td>21</td>
<td>214</td>
<td>124</td>
</tr>
<tr>
<td>Average</td>
<td>145.00</td>
<td>195.50</td>
<td>21.41</td>
<td>223.75</td>
<td>215.91</td>
</tr>
</tbody>
</table>

Note: Total of five traps in respective months.

Data presented in Table (2) showed that the effect of extracted sugar, Indol, phenol, and amino acids from date palm tissues and acetyl acetate as kairomones on females longevity of red palm weevil adult females that were collected from traps. Results showed that the longest life span was observed in females attracted to traps contained acetyl acetate and amino acids traps. Results also showed that shortest life span of female was obtained from phenol traps.

Table (2): Female longevity of RPW attracted to traps contained extracted substances from date palm tree tissues and acetyl acetate.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sugars</th>
<th>Indols</th>
<th>Phenols</th>
<th>Amino acids</th>
<th>Acetyl acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>12</td>
<td>34</td>
<td>4</td>
<td>72</td>
<td>98</td>
</tr>
<tr>
<td>April</td>
<td>24</td>
<td>56</td>
<td>16</td>
<td>67</td>
<td>124</td>
</tr>
<tr>
<td>May</td>
<td>38</td>
<td>58</td>
<td>12</td>
<td>76</td>
<td>134</td>
</tr>
<tr>
<td>June</td>
<td>34</td>
<td>55</td>
<td>14</td>
<td>57</td>
<td>116</td>
</tr>
<tr>
<td>July</td>
<td>40</td>
<td>43</td>
<td>12</td>
<td>54</td>
<td>105</td>
</tr>
<tr>
<td>August</td>
<td>42</td>
<td>45</td>
<td>5</td>
<td>64</td>
<td>114</td>
</tr>
<tr>
<td>September</td>
<td>33</td>
<td>44</td>
<td>3</td>
<td>50</td>
<td>88</td>
</tr>
<tr>
<td>October</td>
<td>26</td>
<td>32</td>
<td>2</td>
<td>44</td>
<td>78</td>
</tr>
<tr>
<td>November</td>
<td>36</td>
<td>45</td>
<td>4</td>
<td>48</td>
<td>104</td>
</tr>
<tr>
<td>December</td>
<td>25</td>
<td>38</td>
<td>3</td>
<td>53</td>
<td>122</td>
</tr>
<tr>
<td>January</td>
<td>16</td>
<td>32</td>
<td>6</td>
<td>46</td>
<td>143</td>
</tr>
<tr>
<td>February</td>
<td>12</td>
<td>36</td>
<td>8</td>
<td>54</td>
<td>145</td>
</tr>
<tr>
<td>Average</td>
<td>28.16</td>
<td>43.16</td>
<td>7.41</td>
<td>75.08</td>
<td>114.25</td>
</tr>
</tbody>
</table>

Note: Total of five traps in respective months.
REFERENCES

Lane J. H. and Eynon L. (1923). Volumetric determination of reducing sugars by means of Fehling's solution, with methylene blue as internal indicator. IS1 XXV: 143-149.

Steinke L. (1997). Protein structure core facility, UNMC, Omaha, NE 68198-4525.

ARABIC SUMMARY

تقييم بعض مستخلصات أنسجة نخيل البلح وتأثيرها على قدرة جذب الحشرات الكاملة لسوسة النخيل الحمراء

إيمان السيد حسن الرهيوى
معهد بحوث وقاية النباتات، مركز البحوث الزراعية، النقفي، الجيزة - مصر

تعتبر سوسة النخيل الحمراء من أخطر الأفات المدمرة لنخيل البلح في مصر، أجريت الدراسة في مزرعة خاصة لنخيل منطقة المنصورية بالجيزة لتتبرير قدرة مستخلصات أنسجة النخيل على جذب سوسة النخيل الحمراء أظهرت النتائج أن كل من الأحماض الأمينية والأندولات كانت أكثر جاذبية من السكريات المستخلصة، كما أوضحت النتائج أن الفينولات أقل جاذبية لأعداد الحشرات الكاملة مقارنة بالمركبات الأخرى.