Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematic, morphology, evolution, control of insects, arachnids, and general entomology.

Survey, Seasonal Abundance of Thrips Species and First Record of Two Thrips Species Associated With Soybean and Weed Plants in Egypt

A. S. Abd El-Wahab
Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt

Correspondence: abeer5698987@yahoo.com

ABSTRACT

Several thrips species are known to feed on soybean (Glycine max Merr.) and can cause yield reduction. Besides, the other important reason for thrips survey is to determine its role as vectors of Tospovirus in soybean. There is little information available about thrips species present on soybean crop, and their abundance in Egypt. Field survey took place at the farm of Agricultural Experiment Station, Faculty of Agriculture, Cairo University, Giza Governorate, Egypt (season 2014) to survey the different thrips species. Soybean cv. Giza 111 was sown in late May. The experimental area received all the usual agricultural practices except for any pest control measures. Thrips species associated with soybean were collected and differentiated to species. A total of 16 different thrips species was surveyed. These included 14 phytophagous and 2 predator thrips species. The most abundant species was *Thrips tabaci* with an average no. 226.2 individual/plant, it had two major peaks on soybean, the first peak was at late June (21.9 individual/plant), while the second one was occurred on mid-August (38 individual/plant). *Frankliniella occidentalis* occupied the second rank (107.02 individual/plant), *Neohydatothrips variabilis* came third in that order (57.5 individual/plant) followed by, *Caliothrips phaseoli*, *F. tritici* and *F. Schultzei* (24.1 & 34.2 & 46.5 individual/plant respectively). *N. variabilis*, *Caliothrips phaseoli* and *F. Schultzei* were reached their highest numbers (13.2, 19.4 & 16.3 individual/plant) by the end of the season, respectively. Generally speaking, both soybean thrips, *N. variabilis* and bean thrips, *Caliothrips phaseoli*, were recorded for the first time in the present study. Characterization and identification of both two species are presented. There were 27 weed plant species collected from soybean field. Both of *T. tabaci* and *F. occidentalis* were the most common species of soybean and associated weeds. The highest average no. of thrips species was recorded on *Ammi majus* L. (70.7 individual/plant) followed by *Medicago intertexta* L., *Convolvulus arvensis* L., *Mellilotus indicus* L., and *Malva parviflora* L., which harboured (52.3, 48.8, 44.3 & 44.5 individual/plant, respectively), while the lowest average no. (3.3 individual/plant) was occurred on *Urtica urens* L. Seasonal abundance of the thrips species associated with weeds, proved that both *T. tabaci* and *F. occidentalis* were the most dominant species (36.7 & 17.4 individual/ weed plant,
respectively). In conclusion, weeds can serve as reservoir alternative hosts for plant viruses and thrips vectors, therefore should be considered when endeavoring to manage and control plant viruses of cultivated soybean plants.

INTRODUCTION

The earliest known cultivation of soybean (Glycine max Merr.) in Africa was in Egypt in 1858, followed by Tunisia in 1873, and Algeria in 1880, (http://soybeanafica.com/index). It’s to use in Egypt was started from the year 1976, since it is a basic source of protein in the poultry and animal feed.

Soybean is an important oil seed crop following cotton in Egypt. It has high seed protein content (30-40%) and about 30% seed oil content. It is very important food and feeds crop. Several investigators reported that factors affecting soybean; fertilization, sowing date, insects and virus infestation play an important role in crop productivity (Hassan et al., 2002 and Soliman et al. 2007). Soybean is attacked by many kinds of pests and a total of many species of insect pests viz. cotton leafworm Spodoptera littoralis (Bosid.), cotton aphid, Aphis gossypii (Glov) and different thrips species was recognized.

Thrips are important insect pests in many soybean production areas due to the feeding injury caused by larvae and adults, the indirect damage is caused by transmission of tospoviruses (Almeida et al., 2003; Gent et al., 2004). About 50% of thrips species are fungivorous (Mound, 2003). A few are obligate predators on other small arthropods of the other 50% species (Palmer & Mound, 1990) and most of them are phytophagous, including several opportunist species considered as crop pests (Lewis, 1997& Moritz et al., 2004).

Soybean thrips; Neohydatothrips variabilis (Beach) is one of the most abundant thrips species found in soybean fields. Other species that are present include eastern flower thrips; Frankliniella tritici and tobacco thrips; Frankliniella fusca (Hinds) (Irwin et al., 1979). Other reports of thrips found on soybean include Caliothrips impurus (Priesner), Caliothrips phaseoli (Hood), Frankliniella insularis (Franklin), Frankliniella occidentalis (Pergande), Frankliniella schulzei (Trybom), Scirtothrips dorsalis (Hood), Sericothrips occipitales (Hood), Taeniothrips sjostedti (Trybom), Thrips palmi (Karny) and Thrips tabaci (Lindeman) (Viteri et al., 2010).

Since, Tospoviruses are not seed transmissible (Zhou et al., 2011) also, SVNV (soybean vein necrosis virus) lacks seed transmission in soybean. Limited studies were conducted on SVNV (Khatabi et al., 2012, Zhou & Tzanetakis, 2013), still, the main factors of tospoviruses transmission are thrips vectors, similar to the other tospoviruses (Zhou et al., 2013 and Abd El-Wahab & El-Shazly 2016). SVNV is vectored by different thrips species therefore, it is important to monitor thrips populations in relation to the incidence of the virus to predict the epidemics. Alternative hosts, such as weeds, can also contribute to the spread of Tospoviruses and thrips vectors from infected winter weed hosts (Chappell et al., 2013). Also, summer weeds are thought to be involved as well, spreading Tospoviruses to winter weeds after crops are harvested (Kahn et al., 2005).

Management of SVNV in soybean should focus on the thrips vector of the virus. Thrips, as well as the secondary plant hosts are the main local sources of inoculum for the spread of SVNV to and within soybean fields (Hajimorad et al., 2015). There are at least 11 species of the genera Thrips and Frankliniella reported to transmit tospoviruses in nature (Mound, 2005).

Thrips tabaci is the most damaging Thysanoptera species (Trdan et al., 2007), it is an extremely polyphagous species and a serious pest of a wide range of economically important crops including soybean in many parts of the world.
Survey, seasonal abundance of thrips species and first record of two thrips species associated with soybean

(Theunissen and Schelling, 1998; Cho et al., 2001; Macintyre-Allen et al., 2005 and Duchovskiene, 2006). It infests all parts of the soybean plant at all growth stages and can lead to 20 to 50% yield losses thus leads the farmers into the use of pesticides to protect their crops (Bag et al., 2014, Sedaratian et al., 2010, Massoud et al., 2014 and Hala et al., 2015).

Soybean thrips, N. variabilis, is among the thrips species that are reportedly found in soybean seedlings (Mueller, 1994). Although thrips are reportedly not an economic pest in soybean (Gouge, 1999), Caliothrips phaseoli was reported as an economically important pest of soybean in Mexico and of dry beans in the United States and in Central and South America (Irwin et al., 1979; Mound & Marullo 1996). The three thrips species Caliothrips graminicola Bagnall & Cameron, Caliothrips impurus Priesner, and Caliothrips sudanensis Bagnall & Cameron http://anic.ento.csiro.au/thrips/Egypt, were previously recorded in Egypt (Priesner, 1949 & Priesner, 1964), but no information available about Caliothrips phaseoli. Also, thrips was observed and recorded on weed plant species, some weed species are known to be major sources of TSWV infection within various crops (Wilson, 1998) and IYSV (Smith, 2010).

In Egypt, a little knowledge is yet, available about thrips associated with soybean, therefore, the main objectives of this study were to survey thysanopterous species which attack soybean in Egypt, and to record the new thrips species as well. This information might be important for management strategies to reduce the damage caused by Tospoviruses e.g., SVNV as a newly isolated Tospovirus in Egypt (Abd El-Wahab and El-Shazly, 2016).

MATERIALS AND METHODS

Thrips species associated with soybean plants in the field:

Present field survey study was conducted at the farm of Agricultural Experimental Station, Faculty of Agriculture, Cairo University, Giza, Egypt for the purpose of recording different thrips species occurring on soybean, plants in the field and studying their seasonal abundance. The experimental area received all the recommended normal agricultural practices except for insecticides application. Thrips fauna were sampled weekly from late May until September (2014). Fifty soybean plants were randomly selected, 10 plants were selected from each of the 4 corners and the last 10 plants from the center of the field. The direct count method was used to determine the species of thrips by shaking each plant 3 times onto a white paper and then counting the adults of thrips (winged form) (Irwin and Yeargan, 1980 & Duchovskiene, 2006).

Adults (winged) thrips were collected from plant tissues and placed in glass bottles with 70% ethyl alcohol. The insects were clarified with 5% potassium hydroxide for 30 s and mounted on slides with Canada balsam. Slides were dried at 30°C for 24 h. A Taxonomic Key for Thysanoptera was used for species identification and determination of each specimen (Moritz et al., 2004, Mound & Marullo, 1996).

A number of each adult (winged) thrips species was counted and recorded using a 10X magnification pocket lens. Thrips species were transferred with a fine Camel's brush and inserted into vials containing AGA (60% ethyl alcohol, glycerine and acetic acid (6:1:1)) and labeled. Thrips collected from the whole plant were mounted on glass slides then identified under a stereomicroscope (ZEISS). For microscopic examination, thrips body parts such as antennae, wings, abdomen, and
legs were mounted in Canada Balsam, or Hoyer’s medium in the case of temporary mounts (Mound et al., 1976). For quick identification, a wet mounting is easy and rapid. Specimens were prepared according to (Palmer et al., 1992 and Mound & Kibby 1998). Illustrations were made by using the microscope connected with a digital camera using various magnifications of 10X, 40X, 100X and 400X and identification was done following the key of Moritz et al.(2004), Mound & Marullo (1996), and Mound (1999), using thrips morphological identification techniques of adults (winged) thrips.

Thrips species associated with weeds in and around soybean field:

A parallel sample of the dominant wild plant species associated with soybean field was taken and examined, for surveying different thrips species occur. Five plants were selected randomly from each weed species. The different parts (leaves, stems, flowers) of the different weed plants were carefully inspected and the present thysanopterous insects were recorded. The abundance of each thrips species throughout the growing season was expressed as the number of individuals/ plant at weekly interval samples. Dominant wild plants in soybean field were identified according to (Zaki, 1991, Zaki, 2000 & Attalla, 2002). The actual count method was used, and only five plants from each weed species were taken to survey thrips species associated with different weed plants in soybean field (Carrizo, 1996 & 2001, Chellemi et al., 1994). Total adult forms were extracted and counted from each sample, using a dissecting microscope (40X). Adults thrips were separated for major morphological characteristics and three representative specimens from each suspected thrips species were mounted on glass slides in Faure media. Adults were identified using a compound microscope, descriptions, and keys from Mound and Marullo (1996).

RESULTS AND DISCUSSIONS

The present study revealed the occurrence of 16 different thrips species; 14 out of them are phytophagous species; they were identified as *Thrips tabaci* (Lindeman), *Frankliniella occidentalis* (Pergande), *Frankliniella tritici* (Fitch), *Frankliniella schultzei* (Trybom), *Frankliniella fusca* (Hinds) *Neohydatothrips variabilis* (Beach), *Caliothrips phaseoli* (Hood), *Caliothrips graminicola* (Bagnall), *Caliothrips sudanensis* (Bagnall), *Scirtothrips dorsalis* (Hood), *Thrips palmi* (Karny), *Megalurothrips sjostedi* (Trybom), *Anaphothrips sudanensis* (Trybom), *Arorathrips (Chirothrips) mexicanus* (Crawford), *Aeolothrips fasciatus* (Linnaeus) and *Scolothrips sexmaculatus* (Pergande).

Both of *Arorathrips (Chirothrips) mexicanus* (Crawford, *Anaphothrips sudanensis* are grass thrips while, *Scolothrips sexmaculatus* and *Aeolothrips fasciatus* (Linnaeus) are predator thrips species (Fig. 1). In addition, multiple specimens were encountered and yet under identification species.

The most abundant thrips species was *T. tabaci* with an average no. 226.2 individual/plant followed by *F. occidentalis* 107.02 individual/plant). Obtained results showed that *N. variabilis* came third in that order (57.5 individual/plant). While *C. sudanensis* was the lowest thrips species (4.2 individual/plant) recorded on soybean plants (Fig. 2). *T. tabaci* was the most common species, it had two major peaks on soybean, the first peak was at late June (21.9 individual/ plant), while the second one occurred on mid-August (38 individual/plant). These results are in agreement with the previous study conducted by (Smith et al., 2011&Dominic et al., 2012). *F. occidentalis* was appeared in two peaks 11.9 & 23.4 individuals/plant in
late June and mid-September, respectively (Fig. 3). All of *N. variabilis*, *C. phaseoli* and *F. schultzei* reached their highest numbers by the end of the season (13.2, 19.4 & 16.3 individual/plant), respectively.

Both of *A. mexicanus* and *A. sudanensis* were appeared from mid-July in a very low number, then reached its maximum number by mid-September and end of the season 14.61 and 12.7 individual/plant respectively Fig. (4). The two thrips species; *A. fasciatus* and *S. sexmaculatus* are predator thrips recorded in very low numbers all over the season and reached its maximum number (16.1 & 10.8 individual/plant by mid-September. The average numbers of unidentified thrips species were 7.1 individual/plant. Fig. (5). Our finding agrees with a previous study which indicated that 65% of the thrips species collected were *N. variabilis*, 17% *Frankliniella tritici*, 17% *Echinothrips americanus*, and less than 1% *Frankliniella fusca*, (Red *et al.*, 2001, Jacobson *et al.*, 2016).

![Fig.(1): Showing morphological characteristics of 16 different thrips species recorded on soybean plants in the field (Season 2014) at Giza, Egypt.](image-url)
Fig. (2): Occurrence of 12 different phytophagous thrips species associated with soybean plants cv (Giza 111) in the field (2014, Giza, Egypt).

Fig. (3): Seasonal abundance of 12 different phytophagous thrips species associated with soybean cv (Giza, 111) in the field, (season 2014, Giza, Egypt).

Fig. (4): Seasonal abundance of 2 different grass thrips species associated with soybean plants (cv Giza, 111) in the field, (2014, Giza, Egypt).

Fig. (5): Seasonal abundance of 2 different predator thrips and unidentified thrips species associated with soybean (cv Giza, 111) in the field, (season 2014, Giza, Egypt).
The topic of present study was done for the first time on soybean crop in Egypt, obtained results showed that 14 phytophagous thrips in addition to 2 predator thrips species were presented on soybean. This finding is similar to several previous studies (Irwin et al., 1979; Kogan and Turnipseed, 1987; Higley and Boethel, 1994; Cabrera et al., 2006; Sedaratian et al., 2010). Our results are going in line with those that obtained by (Abraham, 2008 & Gouge 1999). Also they were observed that T. tabaci was the dominant thrips species on soybean leaves, but F. intonsa was dominant in the flowers. Only a few representatives of Anaphothrips obscurus and Thrips angusticeps were found. Among the predatory thrips Aeolothrips intermedius and Scolothrips longicornis were present in greater numbers.

Generally speaking, both of soybean thrips, N. variabilis and bean thrips, Caliothrips phaseoli, are recorded for the first time in the present study. Our results are in agreement with those obtained by (Matorell 1976 & Medina 2003), who they were reported the first record of C. phaseoli, F. gossypiana and E. americanus attacking soybean, in Puerto Rico. Characterization and identification of both two thrips species are presented as follows:

Soybean thrips Neohydatothrips variabilis (Beach):

This species is bicolor and adults body brown with pronotum and posterior part of metathorax pale; Fig. (6: a). Head with three pairs of ocellar setae, pair 3 on anterior margins of the triangle; postocular region short Fig.(6: b). Forewings pale with two transverse dark areas, small dark area at the base, fore wing with the first vein seta row complete; second vein with two setae distally Fig. (6: c). Tibiae and tarsi yellow, also basal half of antennal segments 3-5: Antennae 8-segmented; segments 3-6 with forked sensorium. Fig.(6: d). Pro-notum anterior half with transversely elongate reticules, "blotch" slightly darker with more closely spaced stria. Metanotal striations transverse at anterior, closely longitudinal medially. Fig. (6: e): Abdominal segments 4-6 yellowish with dark ante costal ridge and brown area, abdominal tergites 2-4 median setae often with the distance between their bases scarcely twice diameter of seta pore. Abdominal tergites 2-5 median setae often with the distance between their bases scarcely twice diameter of setal pore; Fig.(6: f). Abdomen segments 7-8 with a posted marginal comb of microtrichia complete. Sternites with many microtrichia medially as well as laterally Fig. (6: g). Abdomen segments 9-10 are much paler than the eight segment, Fig.(6: h). This finding is similar to that of the thrips identification key http://keys.lucidcentral.org/keysthrips. California and (Mound & Marullo,1996) identification keys.

Bean thrips: Caliothrips phaseoli (Hood)

Adults are bicolour dark brown Fig. (7: a). The head and pronotum have internal sculptured markings. The pronotum has no long setae, Fig. (7: b). Antenna 8 segments. Antennal segments 3-5 are yellow with brown shading apically Fig. (7: c). Forewing brown with 3 sub-apically transverse bands and a sub basally white band. The medial band is light brown. Forewing colour at extreme apex dark. Forewing second vein with 6 setae Fig. (7: d). Legs brown, tarsi yellow, also base and apex of tibiae Fig. (7: e).

Metanotum without campaniform sensilla. Metathoracic endofurca elongate and lyre shape Fig. (7: f). Sculpture on lateral thirds of tergites 3-5 comprised mainly of transverse parallel lines Fig. (7: g). Tergite 8 with crisped medially (Fig. 7: h). Our results are in parallel line with the finding of Moritz et al., (2014) and the thrips identification key http://keys.lucidcentral.org/keysthrips. California).
The occurrence of the different thrips species on weed plants associated with soybean crop in the field.

T. tabaci and F. occidentalis were recorded on all the 27 weed plant species and F. tritici was recorded on 26 of them. In this respect, F. occidentalis was the most common thrips, inhabiting 80 of the 82 weed species (Paola, 2001). In addition, 20 thrips species were collected on 28 of the 33 plant species sampled in the States of Maranhão (Élison, 2016).

All of C. graminicola, C. sudanensis, A. sudanensis, A. mexicanus, and S. sexmaculatus were recorded on a number of weeds ranged from 5-9 species only. While, C. phaseoli, N. variabilis and M. sjostedi were recorded on 12-14 weed plant species Fig. (8).

The highest average No. of thrips species was recorded on A. majus (70.7 individual/plant). M. intertexta, C. arvensis L., M. indicus and M. parviflora harboured (52.3, 48.8, 44.3 & 44.5 individual/plant, respectively), while U. urens harboured the lowest No. of thrips Fig. (9). In addition to the grass thrips; A. sudanensis & A. mexicanus (Crawford), the two predator thrips species; Aeolothrips fasciatus (Linnaeus) & Scolothrips sexmaculatus (Pergande) were recorded (Fig. 9). Similarly, only a few representatives of Anaphothrips obscurus and Thrips angusticeps were found. Among the predatory thrips Aeolothrips intermedius and Scolothrips longicornis were present in low numbers, their number was not enough to reduce the number of phytophagous thrips. Besides, there were two dominant grass thrips species found on soybean and the soybean thrips N. variabilis was recorded in commercial sweet potato (Ipomoea batatas L.) fields (Reed et al., 2009).

Seasonal abundance of the thrips species on weeds, proved that both T. tabaci and F. occidentalis were the most dominant thrips species recorded on the dominant 27 weed species, where they appeared in a relatively high number (36.7 & 17.4 individual/weed plant, respectively) recorded at the beginning of the season followed by F. tritici Fig. (10).

Results in Fig. (11a) show the occurrence of T. tabaci, F. occidentalis, F. tritici, F. schultzei, F. fusca and C. phaseoli on the 27 weed plant species collected from a soybean field.

The highest no. of T. tabaci (36.7 individual/weed plant) was found on A. majus, followed by (21.3 individual/weed plant) recorded on I. tricolor; these data go in line with the previous study recorded, 25 of the 69 weed species were identified as hosts for T. tabaci larvae and populations were highest on the Brassicaceous weeds, (Smith et al., 2011). Also, F. occidentalis was recorded in a relatively high no. on A. majus, C. ambrosioides & S. oleraceus (17.4, 14 & 12.7 individual/weed plant), respectively. F. tritici was found on 26 weed species highest average no. (12.4 individual/weed plant) was recorded on A. majus, while F. fusca recorded the
highest average no. (14 individual/weed plant) on C. murale, F. schultzei was found on 19 weed plant species and its highest average no. (7.2 individual/weed plant) was recorded on C. arvensis. Whereas, C. phaseoli were presented on 11 weed plant species only, and its highest average no. (8.5 individual/weed plant) was found on D. stramonium (Fig. 11a).

Obtained results of our study show that, Caliothrips graminicola occurred on 8 weed plant species, the maximum no. (7.3 individual/plant) presented on Lablab purpureus, Caliothrips sudanensis recorded on 10 weed species and its maximum average no. (4.7 individual/plant) was occurred on Melilotus indicus while, N. variabilis recorded on 12 weed plant species, with a relatively high no. (17.2 & 8.4 individual/plant) on Lablab purpureus and Medicago intertexta respectively. Scirtothrips dorsallis was recorded on 7 weed plant species, with a relatively low average no. (7.2 & 1.2 individual/plant) was found on Portulacaria afra and Melilotus indicus respectively. While Megalurothrips sjostedti was recorded on 18 weed plant species with an average no. (7.2 & 0.5 individual/plant) occurred on Lablab purpureus and Sonchus oleraceus, respectively. The grass thrips; Anaphothrips sudanensis was recorded on 5 weed plant species with an average no. (4.2 & 0.1 individual/plant) occurred on Cynodon dactylon and Ipomoea tricolor respectively. Also, Arorathrips mexicanus was recorded on 6 weed plant species with an average no. (5.2 & 4.7 &3.1 individual/plant) was occurred on Cynodon dactylon, Setaria verticillata and Sorghum virgatum respectively.

The predator thrips; Aeolothrips fasciatus was recorded on 16 weed plant species, its maximum no. found on Sonchus oleraceus L with an average no. (7.6 individual/plant) while the other predator; Scolothrips sexmaculatus was recorded on 9 weed plant species only. Fig. (11c). It is worth to mention that a previous study recognized and identified predator in the genus Scolothrips (Mound, 2011).

In this respect, previous studies indicated that weed species hosts for onion thrips, Thrips tabaci play an important role as sources of Iris yellow spot virus (Smith, 2010) and wild plant hosts harboured thrips vectors of TSWV (Chellemi et al., 1994). Also, a previous study showed that the thrips abundance on weeds is an indicator of TSWV vectors at any time (Carrizo, 1998 & Wilson, 1998). Similar results showed that thrips species collected on weeds were C. phaseoli Bradinothrips musae, Chaetanaphothrips orchidii and Hoodothrips lineatus. Although these species are pests of many economic crops in Brazil, (Montero et al., 1999). Other three thrips species, F. tritici, F. fusca and N. variabilis were collected in present work and F. tritici was the most abundant species (Michael and Gary, 1999).

Irwin et al.,(1979) recorded ten species of thrips on soybean; Leiothrips mali, Denderothrips oratus, Thrips physapus, Anaphothrips obscurus, Thrips tabaci, Frankliniella fusca, F. tritici, S. variabilis, Aeolothrips bicolor and A. fasciata. While, Elison et al., (2013) collected eight thrips species which were identified as Caliothrips phaseoli (Pergande, 1895), Franklioniella brevicaulis Hood, F. gardeniae Moulton, F. insularis (Franklin), F. schultzei (Trybom), F. tritici (Fitch), Haplothrips gowdeyi (Franklin) and Salpingothrips minimus Hood. Two other unidentified thrips species were collected: Plesiothrips sp. and Scolothrips sp. The thrips species F. schultzei was recorded on six fabaceous crops and F. gardeniae was the first record in the State of Piauí. The first records of thrips on Phaseolus lunatus L. in Brazil were established. Some species are known as pests of Fabaceae mostly in southern and southeastern Brazil.
Fig. (6 a): Soybean thrips is bicolor, adults body brown with pro-notum and posterior part of meta-thorax pale.

Fig. (6 b): Head with three pairs of ocellar setae, pair 3 on anterior margins of triangle; postocular region short.

Fig. (6 c): Four wing with first vein seta row complete.

Fig. (6 d): N. variabilis, showing 8-segmented antenna. Segments 3-5 with locked ensorium.

Fig. (6 e): Neohydatothrips variabilis, showing both meso- and metasternal endofures with spinula.

Fig. (6 f): N. variabilis showing several rows of microtrichia on abdominal tergites, segments 4-6 yellowish with dark antecostal ridge.

Fig. (6 g): Abdomen segments 7-8 with posterior marginal comb of microtrichia complete.

Fig. (6 h): Abdomen segments 9-10 much paler than 8.

Fig. (6): Showing distinguishing features of Soybean thrips; Neohydatothrips variabilis (Beach).
Fig: (7) Showing distinguishing features of soybean thrips *Caliothrips phaseoli* (Hood).
Fig. (8): Occurrence of 16 different thrips species recorded on 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).

Fig. (9): Occurrence of 16 different thrips species recorded on the dominant 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).

Fig. (10): Abundance of 16 different thrips species recorded on the dominant 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).
Survey, seasonal abundance of thrips species and first record of two thrips species associated with soybean crop in the field, (season 2014, Giza, Egypt).

Fig. (11a): Occurrence of 16 different thrips species recorded on the dominants 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).
Fig.(11b): Occurrence of 16 different thrips species recorded on the dominants 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).
Survey, seasonal abundance of thrips species and first record of two thrips species associated with soybean

Fig.(11c): Occurrence of 16 different thrips species recorded on the dominant 27 different weed plant species associated with soybean crop in the field, (season 2014, Giza, Egypt).
CONCLUSION

This is the first study of the survey and seasonal abundance of 16 thrips species attacking soybean and 27 weed species in and around soybean field. Both of *T. tabaci* and *F. occidentalis* were the most common on *Glycine max* (L.) and weeds. Different thrips species are vectors of Tospoviruses, it is important to monitor thrips vector populations in relation to the incidence of the virus to predict the epidemics. Also, a survey of thrips and associated weeds are important in order to establish cultural practices to reduce or prevent invasions of thrips populations that are harboured in these weeds into the crop.

In alternatively, weeds have shown to be important overwintering reservoirs for TSWV (Groves *et al*., 2001). Given the relative similarities between Tospovirus spp., these traits may be similar for IYSV. Previous studies have reported that the morning glory weed is a symptomless host of SVNV and can act as a source of inoculum for soybean fields (Sikora *et al*., 2016). SVNV was not only vectored by Thrips but also affect the life history of thrips (Keough *et al*., 2016). Knowledge of the weed species in which thrips develop helps in the management of a pest thrips by removing the weed or by using it as trap (Lima *et al*., 2000).

However, further studies are required in order to continue identification of collected unidentified thrips specimens, investigating the impact of (SVNV) on soybean yield and isolating & identifying new “Tospovirus” associated with soybean.

REFERENCES

الملخص العربي

الحشرة الفيروسية للأطاع الترسي على فول الصويا والحشائش المرتبطة به:

وعبر صلاح الدين عبد الوهاب

وحة فيزيولوجيا الحشرات، جنس الحشرات الأحادية والثدييات - كلية الزراعة - جامعة القاهرة - الجيزة - مصر
