Hymenoptorous parasitoids as a bioagents for controlling maybugs (Hemiptera: Pseudococcidae) in Egypt

Attia, A. R.
Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.

ABSTRACT

A wide range of parasitoids are found attacking the mealybug species belonging to families namely Aphelinidae, Encyrtidae, Platygastridae, and Signiphoridae. A list of 26 species of parasitoids were recorded attacking the different species of mealybug; 20 species belong to family Encyrtidae, and one species from Platygastridae are primary parasitoids. The rest of parasitoids (5 species) are secondary parasitoids which belong to the families; Aphelinidae, Encyrtidae, Pteromalidae, Signiphoridae and Information about host insects, host plants, distribution, biological notes and role in the biological control for mealybug parasitoids were recorded in this paper.

Keywords: Hymenoptorous parasitoids, mealybugs, Egypt

INTRODUCTION

Mealybugs are small soft-bodied insects with sucking mouthparts belonging to order Hemiptera. A list of 55 species of mealybugs were recorded in Egypt until 2008 belong to Margarodidae and Pseudococcidae (6, 49 species in respective). The mealybug species, Planococcus ficus, Planococcus citri, Ferrisia virgatus, Maconellicoccus hirsutus, Saccharicoccus sacchari, Icerya aegyptiaca and Icerya purchasae are considered as serious pests of many economic important plant and ornamental plant in Egypt. The population of mealybugs on Citrus, Mango, Guava, Apple and Pears are under control by its associated natural enemies but on Grape vine, vitis vinifera which is considered one of the most important crops in Egypt is infested by the pseudococcid, Planococcus ficus causing damage by feeding activity of its nymphs and adults, on clusters. Moreover, during its feeding on different parts of the plant and excreting honey dew that supports the growth of sooty mould. Sooty and sticky bunches harboring mealybug individuals and their white cottony wax masses tend to be inferior in the marketing value as table grapes. In addition to this obvious damage, P. ficus is capable of transmitting grape vine leafroll disease from plant to another.

The problem with P. ficus in grapevine is already very grave and ways to diminish the losses caused by this mealybug should be searched for and the only sustainable way on along-term basis in biological control. A wide range of encyrtid parasitoids in the world are found attacking the vine mealybug; i.e., Anagyrus pseudococci, Leptomastix flavus, Clausenia josefii, Cecocidoxenoides pergrinues and Leptomastidae abnormis. These parasitoids are located on the Egyptian fauna. Rearing and releasing these parasitoids will produce the hope to impact this pest.
RESULTS

Table 1, represents a list of parasitoids attacking mealybugs in Egypt.

<table>
<thead>
<tr>
<th>The parasitoids</th>
<th>Family</th>
<th>The common host insect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acerophagus sp.</td>
<td>Encyrtidae</td>
<td>Nipaecoccus viridis</td>
<td>Abd-Rabou and Abd El- Gawad</td>
</tr>
<tr>
<td>2. Allotropa mecrida (Walker)</td>
<td>Platygastrida</td>
<td>Maconellicoccus hirsutus</td>
<td>Abd- Rabou(2000b) and Mousa et. al. 2001</td>
</tr>
<tr>
<td>3. Anagyrus aegyptiacus Moursi</td>
<td>Encyrtidae</td>
<td>Nipaecoccus viridis</td>
<td>Moursi (1948)</td>
</tr>
<tr>
<td>4. Anagyrus greeni (Howard)</td>
<td>Encyrtidae</td>
<td>Saccharicola sacchari</td>
<td>Abd- Rabou(2000a)</td>
</tr>
<tr>
<td>6. Anagyrus pseudococci (Girault)</td>
<td>Encyrtidae</td>
<td>Maconellicoccus hirsutus</td>
<td>Priesner and Hosny (1940)</td>
</tr>
<tr>
<td>7. Anagyrus saccharicola Timberlake</td>
<td>Encyrtidae</td>
<td>Saccharicola sacchari</td>
<td>Abd- Rabou(2002b)</td>
</tr>
<tr>
<td>14. Homalotylus vicinus Silvestri</td>
<td>Encyrtidae</td>
<td>Maconellicoccus hirsutus</td>
<td>Priesner and Hosny (1940)</td>
</tr>
<tr>
<td>15. Leptomastidea abnormis (Girault)</td>
<td>Encyrtidae</td>
<td>Maconellicoccus hirsutus</td>
<td>Awadallah et al. (1999) and Abd- Rabou (2000b) and Mousa et.al. (2001)</td>
</tr>
<tr>
<td>16. Leptomastis dactylopii Howard</td>
<td>Encyrtidae</td>
<td>Maconellicoccus hirsutus and Planococcus ficus</td>
<td>Abd-Rabou (2000b) and Awadallah et al. (2002)</td>
</tr>
<tr>
<td>17. Leptomastis flava Mercet</td>
<td>Encyrtidae</td>
<td>Nipaecoccus viridis</td>
<td>Priesner and Hosny (1940) and Abd-Rabou and Abd El- Gawad (2000b)</td>
</tr>
<tr>
<td>19. Marietta leopardina Motschulsky</td>
<td>Aphelinidae</td>
<td>Anagyrus kamali, Gyranusoidea indica and Leptomastis dactylopii</td>
<td>Awadallah et al. (1999)</td>
</tr>
</tbody>
</table>

According to Table (1) each parasitoid will be discussed taking into consideration host insect, host plant, distribution, remark notes, biological notes and its role in the biological control in concern.

1. **Acerophagus sp. (Family: Encyrtidae).**

 Host insect: *Nipaecoccus viridis* (Newstead) (Homoptera :Pseudococcidae).

 Host plant: *Lebbek* sp.
Hymenptrous parasitoids as a bioagents for controlling maybugs in Egypt

Distribution: Beni-Suef governorate.

Remarks: This species was recorded for the first time in Egypt by Abd-Rabou and Abd El-Gawad (2002).

Role in the biological control: *Acerophagus* sp. was recorded attacking *N. viridis* with an average parasitism rates 3.6 and 2.9% during the two years under considerations. The peaks of parasitism rates by this species were 18.3 and 14% Abd-Rabou and Abd El-Gawad (2002).

2. *Allotropa mecrida* (Walker) (Family: Platygastridae)

Host insect: *Maconellicoccus hirsutus*, *Pseudococcus longispinus* (Targioni-Tozzetti) (Homoptera: Pseudococcidae).

Host plant: *Hibiscus* sp.

Distribution: Alexandria governorate.

Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2000b) as a *Allotropa* sp. Later Abd-Rabou and Hendawy (2005) nominated this parasitoid.

Role in the biological control: This species parasitized *Maconellicoccus hirsutus* with an average parasitism rates of 9.8 % and the maximum parasitism rate was 27% (Abd-Rabou, 2000b).

3. *Anagurus aegyptiacus* Moursi (Family: Encyrtidae)

Host insect: *Pseudococcus filamentosus* Ckll. (Homoptera :Pseudococcidae).

Host plant: *Lebbek* sp.

Distribution: Beni-Suef and Giza governorates.

Remarks: This species was recorded for the first time in Egypt by Moursi (1948)

Biological notes: The duration of the life cycle is 28 days at a temperature of 25°C and 16 days at 31°C and the sex ratio being 1:1 among parasites collected in the field or reared in the laboratory, there are two to three generation of the parasite for every host generation. The parasite shows predilection to the first, second and early third instars of the host while male prepupae, pupa and egg laying females are not attacked (Moursi, 1948).

Role in the biological control: *A. aegyptiacus* was reared from *N. viridis*, with an average parasitism ratesof 12% and the maximum parasitism rates was 30.4% Abd-Rabou and Abd El-Gawad (2002).

4. *Anagyurus greeni* (Howard) (Family : Encyrtidae)

Host insect: *Antonina* sp., *Pseudococcus* sp. and *Saccharicola sacchari* (Cockerell) (Homoptera :Pseudococcidae)

Host plant: Sugar cane

Distribution: Cairo, Giza and Qalyubiya governorates.

Remarks: This species was recorded for first time in Egypt by (Abd-Rabou, 2001).

Role in the biological control: *A. greeni* was reared from *S. sacchari* with an average parasitism rates of 1.3% and the maximum parasitism rates was 6.5% (Abd- Rabou, 2000a).

5. *Anagyurus kamali* Moursi (Family : Encyrtidae)

Host insect: *Maconellicoccus hirsutus* (Homoptera :Pseudococcidae).

Host plant: *Hibiscus* sp.

Distribution: Cairo, Giza and Qalyubiya governorates.

Remarks: This species was recorded for the first time in Egypt by Moursi (1948).

Biological notes: The duration of the life cycle is 18 days at a temperature of 25°C and the sex ratio being 1 : 1 among parasites collected in the field or reared in the laboratory, there are two to three generation of the parasite for every host generation. The parasite shows predilection to the first, second and early third instars of the host while male pre pupae, pupa and egg laying females are not attacked (Moursi, 1948).
Role in the biological control: *A. kamali* was reared from *M. hirsutus*, with an average parasitism rates of 20.7% and the maximum parasitism rates was 37% (Abd-Rabou, 2000b).

6. *Anagyrus pseudococci* (Girault) (Family: Encyrtidae)

Host insect: *Maconellicoccus hirsutus* and *Planococcus citri* (Homoptera: Pseudococcidae).

Host plant: *Vitis venifera*

Distribution: Alexandria and Giza governorates.

Remarks: This species was recorded for first time in Egypt by Priesner and Hosny (1940).

Role in the biological control: *A. pseudococci* was reared from *N. viridis* with an average parasitism rates of 9.4% and the maximum parasitism rates was 35.4% Abd-Rabou and Abd El-Gawad (2002). This parasitoid was reared from *S. sacchari* with an average parasitism rates of 1.8 % and the maximum parasitism rates was 12% (Abd-Rabou, 2000a).

7. *Anagyrus saccharicola* Timberlake (Family: Encyrtidae)

Host insect: *Saccharicola sacchari* (Homoptera: Pseudococcidae)

Host plant: Sugar cane

Distribution: Beni-Suef governorate.

Remarks: This species was imported, reared and released for first time in Egypt by Abd-Rabou (2002a).

Role in the biological control: About 146163 parasitoid adults of *A. saccharicola* mass reared and released in five governorates in Upper Egypt. This parasitoid established readily and spread rapidly (Abd-Rabou, 2002a).

8. *Anagyrus shahidi* Hayat (Family: Encyrtidae)

Host insect: *Antonina graminis* (Homoptera: Pseudococcidae)

Host plant: grass

Distribution: Alexandria governorate.

Remarks: This species was recorded for first time in Egypt by Karam and Abou-ElKhair (1996).

Role in the biological control: This species is a primary parasitoid of *A. graminis* with rare parasitism rates.

9. *Blepyrus insularis* (Cameron) (Family: Encyrtidae)

Host insect: *Ferrisia virgata* (Homoptera: Pseudococcidae).

Host plant: *Acalypha macrophylla, Lantana camara, Sesbania aculata*, *Guava trees* and mulberry trees *Morus alba*.

Distribution: Cairo and Giza Governorate

Remarks: This species was recorded for first time in Egypt by Angel R. Attia (1997).

Biological notes: This parasitoid is a solitary endoparasitoid on *F. virgata*. The second nymphal instar of the host is the most preferred one for parasitism; *Ferrisia* adults are never attacked. The means of total developmental period for the parasitoid was 37.9 days. Most of the progeny (96.4%) was females, while 3.6% were males (Awadallah et al, 1999).

Role in the biological control: The parasitoid was collected from August 1st and showed two peaks of abundance; on September 1st and on October 15th and vanished completely from the collected samples from February 1st to July 15th. Rates of parasitism was ranged between 1.4% and 16.4% on the host plant *Acalypha macrophylla* and ranged between 16.7 % to 70.6 % on the host plant *Lantana camara* (Attia, 1997).
10. **Chartocerus subaeneus** (Foerster) (Family: Signiphoridae)

Primary parasitoid: Allotropa sp., *Leptomastix dactylopii* (Hymenoptera : Encyrtidae)

Host insect: *Maconellicoccus hirsutus*, Planococcus citri, Planococcus ficus, Ferrisia virgata and Saccharicola sacchari (Homoptera : Pseudococcidae).

Host plant: Hibiscus sp., Vitis vinifera and Sugar cane

Distribution: Giza, Alexandria, Assiut, Beni-Suef, and Cairo governorates.

Remarks: This species was recorded for first time in Egypt during the period of 1991 – 1993 by Attia (1997).

Biological notes: This is deuterotokous species and an obligatory direct hyperparasite of mealybugs which develops ectoparasitically on fully developed larvae and pupae of various primary encyrtid parasites in mummified mealybugs. Development from egg to adult emergence took 16.4 days at 28°C.

Role in the biological control: *C. subaeneus* was reared as a hyperparasitoid from *S. sacchari* with an average parasitism rates0.8. % and maximum parasitism rate was 4% (Abd-Rabou, 1999)

11. **Clausenia josefi** Rosen (Family: Encyrtidae)

Host insect: Planococcus ficus (Signoret) (Homoptera : Pseudococcidae).

Host plant: Vitis vinifera

Distribution: Giza governorate.

Remarks: This species was recorded for first time in Egypt by Awadallah et al. (2002).

Biological notes: This parasitoid is a solitary endoparasitoid and an arrhenotokous species, as unfertilized eggs develop into males only. The total mean number of progeny per virgin female was 118 individuals (males) and the total mean number of progeny per fertilized female was 95.9 individuals; 70.6 males and 25.3 females (Angel R. Attia 2003).

Role in the biological control: Parasitoid’s counts were not enough to overcome and impact the population of grapevine mealybug *Planococcus ficus* (Attia, 2003)

12. **Coccidoxenoides peregrines** (Timberlake): (Family: Encyrtidae)

Host insect: Planococcus citri (Risso)

Host plant: Codiaeum variegatum

Distribution: Giza governorate.

Remarks: This species was recorded for first time in Egypt by Attia and El-Arnaouty (2009).

Biological notes: This parasitoid is a solitary, endoparasitoid and thelytokous species.

Role in the biological control: The parasitoid *C. peregrines* was collected from the citrus mealybug, *Planococcus citri* infested Croton plant at Giza region (with mean number of 118.3 – 134 individuals / 20 leaves during November 2008) associated with the other natural enemies such as, the hemerobiid predator, *Sympherobius amicus* Navas, the coccinellid predator, *Scymnus syriacus* (Mars.) and the chrysopid predator, *Chrysoperla carnea* (Steplens). The population of the previous natural enemies cannot reduce the population of citrus mealybug, *Planococcus citri* on Croton plant (Afifi, et al. 2010).

13. **Gyranusoides indica** Shaffee, Alam & Agarwal (Family: Encyrtidae)

Host insect: *Maconellicoccus hirsutus* (Homoptera : Pseudococcidae).

Host plant: Hibiscus rosa sinensis

Distribution: Giza governorate.
Remarks: This species was recorded for first time in Egypt during 1991 -1993 by Awadallah et al. 1999
Role in the biological control: This parasitoid was reared from *M. hirsutus* with an average parasitism rates of 6.2% and the maximum parasitism rates was 20 % (Abd-Rabou, 2000b).

14. *Homalotylus vicinus* Silvestri (Family: Encyrtidae)
Host insect: *Maconellicoccus hirsutus* (Homoptera : Pseudococcidae).
Host plant: *Hibiscus* sp.
Distribution: Cairo governorate.
Remarks: This species was recorded for first time in Egypt by Priesner and Hosny (1940).
Role in the biological control: This species was collected in a few numbers by Abd-Rabou (2006).

15. *Leptomastidea abnormis* (Giraut) (Family: Encyrtidae)
Host insect: *Maconellicoccus hirsutus*, *Nipaecoccus nipae* and *Planococcus citri* and *Planococcus ficus* (Homoptera: Pseudococcidae).
Host plant: *Hibiscus rosa sinensis*, *Acalypha macrophylla*, *Lantana camara* (Awadallah et al. 1999) and *Vitis vinifera* (Mona et al.)
Distribution: Alexandria, Cairo and Giza governorates.
Remarks: This species was recorded for first time in Egypt during 1991 – 1993 by Awadallah et al. 1999
Role in the biological control: *L. abnormis* was reared from *M. hirsutus* with maximum parasitism rate was 21% (Abd- Rabou, 2000b).

16. *Leptomastix dactylopii* Howard (Family: Encyrtidae)
Host insect: *Maconellicoccus hirsutus* and *Planococcus ficus* (Homoptera : Pseudococcidae).
Host plant: *Hibiscus sp.* and *Vitis vinifera* (Mona et al.2005)
Distribution: Cairo, Alexandria and Giza governorates.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2000b).
Biological notes: *Leptomastix dactylopii* is solitary endoparasitic species was secured from the vine mealybug, *Planococcus ficus* on grapes in Egypt but its population was low so it cannot reduce the population of the vine mealybug (Mona et al.2005).
Role in the biological control: *L. dactylopii* was reared from *M. hirsutus* with maximum parasitism rate was 8% (Abd- Rabou, 2000b).

17. *Leptomastix flava* Mercet (Family: Encyrtidae)
Host insect: *Nipaecoccus viridis* (Homoptera : Pseudococcidae).
Host plant: *Lebbek* sp.
Distribution: Beni-Suef governorate.
Remarks: This species was recorded for first time in Egypt by Priesner and Hosny (1940).
Role in the biological control: *L. flava* was reared from *N. viridis* with maximum parasitism rate was 26.6 % (Abd-Rabou and Abd El-Gawad ,2002).

18. *Leptomastix nigrocoxalis* Compere (Family: Encyrtidae)
Host insect: *Nipaecoccus viridis* and *Maconellicoccus hirsutus* (Homoptera : Pseudococcidae).
Host plant: *Lebbek* sp.
Distribution: Beni-Suef and Cairo governorates.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou(1999).
Role in the biological control: L. nigrocoxalis was reared from Nipaecoccus viridis with an average parasitism rates of 8.4% and the maximum parasitism rates was 21% Abd-Rabou and Abd El-Gawad (2002). Also this parasitoid attacked M.hirsutus with an average parasitism rates of 2.4% and the maximum parasitism rates was 13% (Abd- Rabou, 2000b).

19. Marietta leopardina Motschulsky Family: Aphelinidae
Host insect: Dysmicoccus brevipes (Cockerell), Maconellicoccus hirsutus, Niacoccus minor Green, Nipaecoccus nipae (Maskell) and Planococcus citri Risso (Homoptera: Pseudococcidae).
Host plant: Hibiscus sp.
Distribution: Behira, Cairo and Giza governorates.
Remarks: This species was recorded for the first time in Egypt by Priesner and Hosny (1940).
Role in the biological control: This species has been recorded by Awadallah et al. (1999) as a hyperparasitoids on the primary parasitoids Anagyrus kamali (Moursi), Anagyrus Sp. and Gyranusoidea indica (Shafee, Alam & Agarwal)

20. Marietta picta (Andre) Family: Aphelinidae
Distribution: Alexandria governorate.
Host insect: Maconellicoccus hirsutus (Homoptera :Pseudococcidae).
Host plant: Hibiscus sp.
Remarks: This species was recorded for the first time in Egypt as a hyperparasitoids associated with M. hirsutus by Abd- Rabou (2000b).
Role in the biological control: This species collected by Abd-Rabou (2006).

21. Microterys sp. (Family: Encyrtidae)
Host insect: Saccharicola sacchari (Homoptera : Pseudococcidae).
Host plant: Sugar cane
Distribution: Assiut and Qena governorates.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2000a).
Role in the biological control: Microterys sp. was reared from S. sacchari with an average parasitism rates of 3.1% and the maximum parasitism rate was 13% (Abd-abou, 2000a).

22. Neoplatycerus palestinensis (Rivany) Family: Encyrtidae
Host insect: Planococcus ficus (Signoret) (Homoptera : Pseudococcidae).
Host plant: Vitis vinifera
Distribution: Giza governorate.
Remarks: This species was recorded for first time in Egypt by Awadallah et al. (2002).
Biological notes: The encyrtid parasitoid, Neoplatycerus is a solitary endoparasitoid. When reared in Planococcus ficus, the average total developmental period of parasitoid Female and male at 30°C was 31.5 and 29.9 days. The second nymphal instar of its host seems to be the most suitable instar than the third one, as resulted to the greatest number of progeny (62.7 individuals) (Awadallah et al. 2004).
Role in the biological control: Awadallah et al. (2002) recorded this species in a few individuals in April.

23. Pachyneuron sp. (Family: Pteromalidae)
Host insect: N. viridis (Homoptera : Pseudococcidae).
Host plant: lebbke
Distribution: Beni-Suef governorate.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2001)
Role in the biological control: Pachyneuron sp. was reared as a hyperparasitoid from N. viridis with an average parasitism rate 0.5 % and maximum parasitism rates was3.5% (Abd-Rabou and Abd El-Gawad, 2002).

24. Paraphaenaodiscus sp. (Family: Encyrtidae)
Host insect: S. sacchari (Homoptera : Pseudococcidae).
Host plant: sugar cane
Distribution: Qena governorate.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2000c).
Role in the biological control: Paraphaenaodiscus sp. was reared from S. sacchari with an average parasitism rates0.2% and maximum parasitism rate was1% (Abd-Rabou, 2000a).

25. Prochiloneurus aegyptiacus (Mercet) (Family: Encyrtidae)
Host insect: Maconellicoccus hirsutus (Homoptera : Pseudococcidae).
Host plant: Hibiscus sp.
Distribution: Alexandria governorate.
Remarks: This species was recorded for first time in Egypt during the period of 1991 - 19993 (Attia, 1997).
Biological notes: This is a secondary parasitoid of the primary parasitoid, Anagyrus sp. and Gyranusoidea indica in the host insect Maconellicoccus hirsutus (Angel R. Attia 1997)
Role in the biological control: This species was recorded as a hyperparasitoid of M.hirsutus with a few numbers Abd-Rabou (2000b).

26. Rhopus nigriclavus (Girault) (Family: Encyrtidae)
Host insect: S. sacchari (Homoptera : Pseudococcidae).
Host plant: sugar cane
Distribution: Beni-Suef governorate.
Remarks: This species was recorded for first time in Egypt by Abd-Rabou (2000a).
Role in the biological control: R. nigriclavus was reared from S. sacchari with an average parasitism rates 0.2% and maximum parasitism rate was 2% (Abd-Rabou, 2000a).

ACKNOWLEDGEMENT

My Deepest thanks to Prof. Dr. Mona H. Tawfik, Chief Researcher in Scale Insects and Mealybug for reading and revision the manuscript.

REFERENCES

Attia, A. R.

ARABIC SUMMARY

طفيليات البق الدقيقى فى مصر

أنجيل رشدى عطية

معهد بحوث وقاية النباتات – مركز البحوث الزراعية – الدقى- جيزة – مصر

تم تسجيل أنواع عديدة من الطفيليات التي تهاجم عدة أنواع من البق الدقيقى وتتنتمى هذه الطفيليات لاربع عائلات تسمى إنسيرتيردى و بلاتيجاستيردى و أفينيلىدى و سيجنيفوردى. تم تسجيل 26 نوعاً من الطفيليات المهاجمة للأنواع المختلفة لبق الدقيقى منها 20 نوعاً من الطفيليات الأولية التابعة لعائلة إنسيرتردى و نوع آخر طفيل أولى ينتمى لعائلة بلاتيجاستيردى أما الخمس أنواع الأخرى هي طفيليات ثانوية تتمى لألواح لعائلات التي تسمى سيجنيفوردى أو أفينيلىدى أو أفينيلىدى أو بتيرومالدى. في هذا المقال تم القاء الضوء على أنواع البق الدقيقى كعالم هام لكل طفيل وايضاً العائل النباتي والتوزيع الجغرافى للطفيليات مع ذكر بعض الملاحظات البيولوجية للطفيليات ودورها في المكافحة البيولوجية لضبط تعداد البق الدقيقى.