
Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University.

Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology.

www.eajbs.eg.net

Egypt. Acad. J. Biolog. Sci., 10(7): 7-18 (2017)

Egyptian Academic Journal of Biological Sciences A. Entomology

ISSN 1687-8809 www.eajbs.eg.net

Annual Occurrence and Population Dynamics, of Cotton Aphids, *Aphis gossypii* Glover on Specific Host Plants at Sharkia Governorate, Egypt

Ibrahim, M. M. A. and H. E. Megahed

Plant Protection Res., Inst., Agric. Res. Center, Dokki, Giza, Egypt

ARTICLE INFO Article History

Received: 9/10/2017 Accepted: 10/11/2017

Keywords:
cotton aphids
Aphis gossypii
host range
occurrence ratio
occurrences periods
annual population dynamic
distribution

ABSTRACT

This study was conducted at Zagazig region, Sharkia Governorate during the period extended from the end of November, 2013 till early December, 2015 to determine host plants list of Cotton Aphid, Aphis gossypii Glover, occurrence on hosts, in addition to figure its annual population dynamic on the important economic and weeds/wild plant hosts to employ these information in preparing effective integrated aphids management program. The obtained results revealed that the cotton aphid colonized wide range of 37 economic host plant species and 23 weeds/wild plant species follow 22 plant families. The highest occurrence ratio of 38.9 %, was recorded on the family Malvaceae plants while, the lowest one of 0.069 % recorded on the family liliaceae (garlic plants). The mean numbers of A. gossypii were varied as host plant variation where the highest occurrence ratio of 16.81 % was recorded on cotton plants; Gossypium barbadenc L. followed by okra plants, Hibiscus esculentus L. presented 11.456 %; while the lowest ratio of 0.043 % was recorded on aellen-wild beet, Beta vulgaris Perennis. In regarded to the weed/wild plants the highest harboring ratio of 5.023% was recorded on purslane, Pertulaca oleracea while the lower ratio of 0.079 % was recorded on yellow weed sorrel, Oxalis corniculata plants.

The cotton plants, *G. barbadenc* found harbored *A. gossypii* with longest periods extended from early April till early October during growing season of 2014 and from early- may till mid-October 2015, with the highest peak of 320 individuals / leaf recorded at 15th August, 2014; followed by the peak of 270 individuals / leaf recorded at 30th July, 2015 on lantana plants.

In regarded to the general annual population dynamic, there were two critical activity periods, where the aphids recorded on limited number of plant hosts and with low numbers, the 1st period extended from 6th Feb., till 5th Apr., 2014 with 16 hosts only and the population density ranged 1 individual/leaf on scarlet pimpernel, *Anagallis avensis* to 47 individual/leaf on little mallow, *Malva parriflora*. The 2nd activity period from 2nd Jan., till 20th Feb., 2015 with 14 host only and the population density ranged from 1 individual/leaf on shepherd purse, *Capsella bursa-pastoris* to 66 individual/leaf on little mallow, *M. parriflora*. That means the obvious hosts play important role in the annual dispersal and dynamic of *A. gossypii* inter between its main and alternative hosts throughout the activity periods.

INTRODUCTION

Cotton aphids, *Aphis gossypii* Glover (Homoptera: Aphididae) considered as the most worldwide serious aphid species causes yield loss, directly by sucking cell contents of infested plants parts and indirectly by exert huge amounts of honeydew that eventually promotes development of black sooty mold, which reduces the

photosynthetic efficiency and plant vigor and growth (Jazzar and Hammad, 2003). In Egypt, economic threshold of cotton aphids, *A. gossypii* was varied as insect stages, socio economic judgment and insects environment suitability where it was 4-10 insects/leaf, (Ibrahim, 2001). The cotton aphids infested wide range of cultivated economic crops including crops (Cereals, Pulses and Oilseeds), vegetables, fruits, ornamental plants and weeds/wild plants, wild plants are present as alternative hosts for aphids from which they disperse to economic crops plants, in any case the host range varied as location of investigation (Sánchez *et al.*, (2002); Azize *et al.*, 2008; Blackman & Eastop, 2000). In Egypt, most aphids studies were carried out on cultivated economic hosts and inspect the wild plants as accidentally infested hosts (Willcocks, 1922; Hall, 1926; Habib and El Kady 1961; Attia, 1967; Shalaby, 1974; Harakly 1975).

The effective integrated pest management program always needs more and more of recent information about the pest's biology, ecology and host rang (economic and alternative plant hosts) to employ these information in forecasting program and took the decision of *A. gossypii* control measures at suitable time.

The present work aimed to determine the *A. gossypii* host rang, occurrence ratio and occurrences periods on each host, in addition to figure its annual population dynamic on the important economic and weeds/wild host plants at Zagazig region to employ these information in preparing effective integrated aphids management program.

MATERIALS AND METHODS

This study was conducted at Zagazig region, Sharkia Gov. on the all plants or trees (about 200 species of plants and trees) found in the study area during two years extended from the end of November 2013 till early December 2015. The area from Kafer Abd El Aziz to Bany Amer villages were chosen for screening the host range of Cotton Aphid, *Aphis gossypii* Golver, ratio and occurrence periods on hosts , in addition to figure its annual population dynamic on the important economic and weeds/wild host plants.

Weekly randomized samples of ten seedlings in three replicates (at early plants growth period) or ten leaves (of mature plants) or ten shoots of the small plants or ten twigs of trees of inspected plant species. The all plants or trees found in the study area (cultivated economic plants and weeds found interfere this cultivation in addition to the weeds/wild plants found out fields (at road & irrigation canal's banks) were inspected actually in fields early in the morning using hand lens (10X) or took in paper bags to laboratory to examined using binocular stereomicroscope . Aphid's numbers were counted on different inspected plant species and recorded.

The obtained data were subjected to arithmetic curing, population figures illustration (using Excel software computer program) and the obtained results were illustrated in Table (1 a, b) and Figs (1-5) to define host rang, determine ratio and periods of occurrence on host plants, in added to illustrate annual population dynamic of *A. gossypii* on the important hosts. The wild/weeds plants were identified as description made by Boulos and El-Hadidi (1967).

RESULTS AND DISCUSSION

Host Range of Cotton Aphid (CA), Aphis gossypii Golver:

Data in Table (1) revealed that Aphis gossypii colonized wide range of 37

economic plant species and 23 weeds/wild plant species follow 22 plants families could be arranged in descending order in accordance to occurrence ratios (%) as follows: Family Malvaceae harbored 38.9, Cucurbitaceae 12.01, Compsitae 7.141, Verbenaceae 6.458, Solanaceae 5.036, Pertulacaceae 5.023, Chenopodiaceae 4.46, Cruciferae 3.071, Euphorbiaceae 2.764 Meriaceae 1.939, Lamiaceae 1.908, Leguminaceae 1.775, Polygonaceae 1.249, Araliaceae 1.123, Liliaceae 0.069, Supherbiaceae 0.719, Tiliaceae 0.713, Convelvulaceae 0.649, Graminaceae 0.553, Rosaceae 0.496, Apiaceae 0.469, Ovalidaceae 0.079 %.

Glover at Zagazig region during the period extended from end-Nov. 2013 till early-Dec. 2015.													
PF	PSN	Common name	GS	TN	RA	AN	PF	PSN	Common name	GS	TN	RA	A

Table (1b): Host plants and relative abundance percentages of the cotton applies. Applie accessnii

PF	PSN	Common name	GS	TN	RA	AN	PF	PSN	Common name	GS	TN	RA	AN
Solarraceae	Lycpersicum esqulantum	tomato	AS	491	1.635	tamatm	Lamiaceae	Mentha spicata ,	Spearmint	Р	573	1.908	noaanaa
	Solanum melongena	eggplant	AS	522	1.739	bringal	Araliaceae	Hedra colchica,	Botgardbin	AS	337	1.123	leblap
	S. nigrum	plack nightshade	AS	403	1.342	enab deep	Pertulacaceae	Pertulaca oleracea,	Pursalne	AS	1508	5.023	reglh
	Capasicum fruitascens	pepper	AS	96	0.319	felfel	Supherbiaceae	Ricinus communis,	Castor bean	Р	246	0.719	kharoaa
Total					5.036		Tiliaceae	Corchorus olitorius,	Jew,s mallow	AS	214	0.713	melokhia
opodiaceae	Spinacia oleracea	spiach	AW	90	0.299	sbanekh	Convelvulaceae	Convelvulus	Binweed	р	195	0.649	olaik
								arvensis,					
	Beta vulgaris perennis	aellen-wild beet	AW	13	0.043	salk	Graminaceae	Zea mays,	Corn	AS	166	0.553	zorh
	Rumex deutatus	dock	AW	375	1.249	hommaid	Convelvulaceae	Ipomoea batatus,	Sweet potato	AS	164	0.546	batata
<u> </u>	Chenopodium anibrosioides	slender amaranth	AW	508	1.692	zorbaih	Umoellifera	Ammi majus,	Bishop,sweed	AW	141	0.469	khlah
Ū	Amaranthus ascendens lois	livid amaranth	AS	353	1.175	orfediek	Moraceae	Morus alba,	Mulberry	р	139	0.463	tout
Total					4.46		Acanthaceae	Adhatada vasica	Malabar nut tree	р	149	0.496	bstachia
Liliaceae	Allium sativum	garlic	AW	21	0.069	thom	Ovalidaceae	Oxalis corniculata,	creeping woodsorrel	Α/P	24	0.079	hommaid
Rosaceae	Rosa sp	rose	Р	149	0.496	ward							

GS= growth seas on PSN=plant scientific names TN=total numbers RA=rate of abundant PF= plant family AN=Arabic name as=annual summer aw-annual winter A/P= perennial or annual P= perennial

Occurrence ratios of the cotton Aphid, A. gossypii on economic crops hosts:

The mean numbers of A. gossypii infested economic plants were varied as host plans species, recorded highest occurrence rate of 16.81 % (of total numbers found infested all hosts during the whole study period) on G. barbadenc, followed by Hibiscus esculentus L. presented 11.458 %; Lantana sabrifota (6.458%); H. sabdoriffa (4.144%); Luffa aegyptiaca, (3.261%) and Citrullus vulgaris (2.774%). The lowest abundance of 0.043% was recorded on Beta vulgaris Perennis. The following host plants had colonized percent ranged between 2.195 to 0.069% can be arrange in descending order as, H.cannabnus, Althaea rosa, H.lrionum. Cucumis melo var. cantalupensis, C. sativus, C. melo. Var. flexosus, Lycpersicum esqulantum, Solanum melongena, S. nigrum, Capasicum fruitascens, Spinacia oleracea, Beta vulgaris Perennis, Allium sativum, Rosa sp., Helianthus annus L., **Trifolium** alexandarinum, Vicia faba, Sesanium indicum, Sesbania aculeate, Lantana sabrifota, Salix sub cerrata, Psidium guava, Mentha spicata, Ricinus communis, Corchorus olitorius, Zea mays, Ipomoea batatus, Morus alba,

Occurrence ratios of the cotton aphid:

The weed/wild plants were varied as A. gossypii hosts suitability where the highest abundant percentage of 5.023% was noticed on Pertulaca oleracea followed by 4.456 % on Malva parriflera and 2.165 % on Anagallis arvensis. The relatively lowest abundance ratio of 0.079 % was recorded on Oxalis corniculata plants. The following host plants had colonized percentages ranged 1.732-0.096 % can be arrange in descending order as, capsella bursa, Coronopus squamatus Asch, Eruca sativum, Sisymbrium Irio, Brassica rapa, B. kaber, Cucurbita pepa, Citrullus

volgaris, Rumex deutatus, Chenopodium murale, Amaranthus ascendens Lois, Xanthium strumarium, Conyza egyptiaca, C.discorides, Sonchus deraceus, Sichorium endivia, Melilotus indica, Medicago polymerpha, Anagallis arvensis, Euphorbia pilufifera, Rumx dentantus, Hedra colchica, Convelvulus arvensis, Ammi majus, Oxalis corniculata,

Population dynamics and occurrence periods A. gossypii on Economic crops and weeds/wild plants:

Economic crops hosts:

The seasonal and annual population dynamic of *A. gossypii* will be discussed only on main cultivated economic crops hosts that colonized by 11.458 % to 2.105 % of total numbers of aphids on all investigated hosts at study location as follows:

Field crops:

Cotton, Gossypium barbadenc L.:

The data illustrated in Fig. (1) cleared that the cotton plants, *G. barbadenc* was harboured relatively highest numbers of *A. gossypii* with longest occurrence periods extended from plants emergence till harvest during growing season of 2014; the insect population was oscillated and fluctuated drawing two peaks, the 1st one regarded at 22nd May with mean numbers of 250 individuals / leaf and the 2nd recorded at 15th August with mean numbers of 320 individuals/leaf). In the same trend, during the 2nd cotton growing season of 2015 the infestation period was extended from early- may till mid-October illustrated tow peaks; the 1st one noticed at 18th June with mean number of 231 individuals / leaf and the 2nd at 10th of September recorded 221 individuals/leaf).

Sunflower, Helianthus annus L.:

The sunflower, *H. annus* plants was inspected as wild plants found neighbor cultivated fields, along canals and in waste area. The sunflower plants found harboured *A. gossypii* in five occurrence periods, the 1st extended from 2nd Jan. till 13th Feb. 2014 with one population peak of 24 individuals/ leaf recorded at 23rd Jan., The 2nd and short period from 21st Mar. to 3rd May. 2014 with one peak of 13 individuals/ leaf was recorded at 11th Apr., and then the population reduced to restart again at the third occurrence period from 27th Jun. to 27 Sep. 2014 recorded one peak also at 24th Jul. with 37 individuals /leaf. The 4th occurrence period of *A. gossypii* on the wild *H.annus* plants was extended from 28th Nov.2014 to 17th Jan 2015 with only one peak noticed at 26th Dec, 2014 with 23individuals/leaf. The last occurrence period was started from 10th Apr. to 22nd May 2015 with only one peak at 1st May with 25individuals/leaf

Vegetable crop:

Okra plants, Hibiscus esculentus L.:

The data illustrated in Fig. (1) clear that the okra plants, *H. esculentus* recorded 2nd order of *A. gossypii* occurrence ratios and periods after cotton plants. The okra plants found colonized by *A. gossypii* at inspection start time at 28th November 2013 with mean number of 62 individuals / leaf then the population decreased to very low mean number of 4 individuals / leaf and disappeared at 2nd January 2014. During the growing season of 2014, *A. gossypii* colonized okra plants in two occurrence periods the 1st, from 11th April till 20th September 2014 with moderate population oscillation, fluctuation and drawing two definite peaks, the 1st regarded at 31st May (73 individuals / leaf) and the 2nd one at 1st August (60 individuals/leaf); while the 2nd occurrence period was extended from 7th November till 26th December reordering one peak of 22 individuals / leaf at 28th November. In the other hand, during the 2nd okra growing season of 2015 the aphid recorded relatively high

numbers throughout relatively long infestation period extended from 18^{th} April till 3^{rd} December, illustrated three defined peaks; the 1^{st} one at 28^{th} May with 66 individuals / leaf; the 2^{nd} at 26^{th} June, recorded 260 individuals / leaf and the 3^{rd} one at 24^{th} September with 139 individuals / leaf.

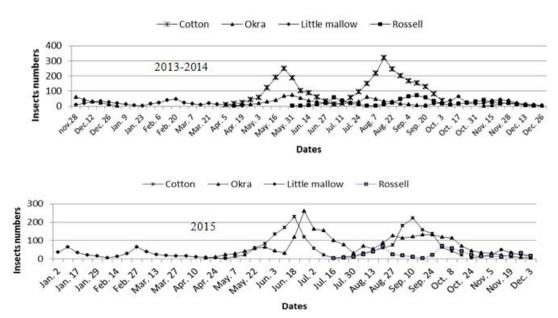


Fig. 1: Population dynamics of cotton aphids on main specific plant hosts at Zagazig region during the period extended from 28, Nov.2013 till 3, Dec. 2015.

Squash, Cucurbita pepo L.:

The data illustrated in Fig. (2) cleared that, the cotton aphids, *A. gossypii* found infested *C. pepo* plants in four occurrence periods; the 1st was extended from 21st Mar. till 22nd May 2014 recorded one peak at 24th Apr. 2014 with 58 individuals/leaf. The 2nd period was extended from 24th Jul. to 29th Aug 2014 on *C. pepo* plants with one weak peak of 9 individuals/ leaf recorded at 15th Aug., and then the population decline to restart again in the third occurrence period from 10th Oct to 5th Dec. 2014 recorded one peak at 7th Nov. with 32 individuals /leaf. The 4th occurrence period of cotton aphids, *A. gossypii* on the *C. pepo* plants was extended from 17th Jan. to 3rd Jun 2015 with three peaks of 13, 57 and 40 individuals/ leaf recorded at 20th Feb, 18th Apr and 1st May for the three peaks, respectively.

Snake cucumber, Cucumis melo var flexosus L.:

The cotton aphids found infested *C. melo* plants throughout whole growth season of plants in one occurrence periods for each of the two study years Fig. (2). The 1st periods extended from 14th Jun. till 29th Aug 2014, recorded one peak at 7th Aug. with 42 individuals /leaf. The second one was extended from 24th Jul. to 15th Oct. 2015 on *C. melo* plants with two peaks of 46 and 66 individuals/ leaf recorded at 13th Aug. and 3rd Sep. for the two inspected peaks, respectively.

Eggplant, Solanum melongena L.:

The *A. gossypii* found infested eggplant plants in three occurrence periods Fig. (2), the 1st extended from 18th Jul. till 20th Sep 2014 recorded one peak at 22nd Aug.2014 with 50 individuals / leaf. The 2nd and short period was extended from 18th Apr. to 15th May 2015 on *S. melongena* plants with one peak of 17 individuals / leaf recorded at 1st May, then the population decline to restart again in the third

occurrence period from 16th Jul to 24th Oct. 2015 recorded two peaks at 13th Aug and 1st Oct. with 38 and 23 individuals/leaf for the two flashed peaks, respectively.

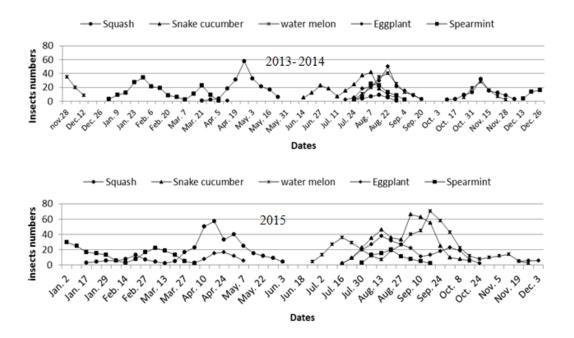


Fig. 2: Population dynamics of cotton aphids on vegetables specific plant hosts at Zagazig region during the period extended from 28, Nov.2013 till 3, Dec. 2015

Ornamental plant, lantana, Lantana sabrifota L.:

The data figured in Fig. (4) chowed that the lantana, *L. sabrifota* was harbored relatively high numbers of *A. gossypii* with five activity periods. The 1st one recorded throughout January 2014 with one population peak at mid-Jan. (10 individuals / leaf). The 2nd activity period was extended from 24th Jul. till 17th Jan. 2015 with four peaks. The peaks were recorded at 3rd week of Aug., 20th Sep., 7th Nov. and 26 Dec. with 35, 25, 46 and 24 individuals / leaf for the four peaks, respectively. The third activity period was extended from 14th Feb till 7th Mar. 2014 with small oscillation with one weak peak of 9 individuals / leaf at 20th Feb. The 4th period was extended from 10th Apr. until 7thMay 2015 with one peak of 15 individuals / leaf at 24th Apr. The last activity period with highest density extended from 2nd Jul. until 3rd Dec. 2015 illustrated three peaks of 270, 52 and 36 individuals/ leaf recorded at 30th Jul., 3rd Sep. and 29th Oct. 2015 for the three peaks, respectively.

Medicinal plants:

Roselle, Hibiscus sabdoriffa L.:

The illustrated data in Fig. (1) cleared that the cotton aphids, *A. gossypii* was infested Roselle plants, *H. sabdoriffa* through the study years with one long term infestation period for each of year. During the 1st year of 2014, the infestation started in low numbers at 31st May recorded 2 individual/leaf, oscillated and fluctuated till the end of Roselle growth season at 19th Dec. recorded three remarked peaks at 5th Jul., 12th Sep. and 7th Nov. with 58, 71 and 39 individuals / leaf for the three peaks, respectively. During 2015 the infestation was delayed to the mid-July but in low numbers also of (2 individual/leaf), then the population increased gradually to record three distinct peaks of 69, 63 and 25individual/leaf recorded at 20th Aug., 1st Oct. and at 26th Nov. for the three peaks, respectively.

Spearmint, Menthe spicat L.:

The spearmint plants *M. spicata* found harbored *A. gossypii* in four occurrence periods Fig. (2), the 1st was started from 2nd Jan. till 5th Apr. 2014 with one population peak of 34 individuals/ shots recorded at 30th Jan. The 2nd period was extended from 24th Jul. to 4th Sep. 2014 on *M. spicata* plants with one peak of 23 individuals/ shots recorded at 15th Aug., then the population reduced to restart again at the 3rd period from 13th Dec. 2014 to 3rd Apr. 2015 recorded two peaks at 2nd Jan. and 7th Mar. with 30 and 22 individuals/shots for the two inspected peaks respectively. The last activity period of cotton aphids on the spearmint plants was in start from 30th Jul. to 17th Sep 2015 with only one peak noticed at 20th Aug, with 20 individuals/shots.

Egyptian Luffa, Luffa aegyptiaca L.:

The illustrated data in Fig. (1) showed that, the *A. gossypii* harbored *L. aegyptiaca* plants through the two study years with four occurrence periods, the 1st one considered as extension over the previous year infestation where it extended from 28th Nov. till 20th Dec. 2013 started with relatively high number of 18 individuals / leaf and then come down. The 2nd occurrence period was extended from 22nd Aug. to 26th Dec 2014 recorded two define peaks of 47and 30 individuals/ leaf recorded at 27th Sep. and 15th Nov.2014 for the two peaks, respectively; then the population decline to restart again to record the third occurrence period from 29th Jan till 19th Mar. 2015 with one weak peak of 18 individuals / leaf. The last period was inspected from 24th Jul. to 3rd Dec. 2015 recorded three peaks; the highest one of 97individuals/leaf was recorded 1st Oct. 2015.

Fruit trees; Guava, Psidium guava L.:

The guava, *P. guava* trees was inspected as solitary trees found in cultivated fields and along irrigation canals in the study area. The guava trees found colonized by the cotton aphids, *A. gossypii* in four occurrence periods Fig (4), the1st one was extended from 9th Jan. till 31st May 2014 with two population peak of 12 and 68 individuals/ leaf recorded at 30th Jan. and 25th Apr. for the two peaks, respectively. The 2nd and shortened occurrence period was extended from 7th Aug. to 12th Sep. 2014 on guava trees with one weak peak of 13 individuals/ leaf recorded at 22nd Aug. then the population reduced to restart again at the 3rd occurrence period from 7th Mar. to 3rd Jun. 2015 recorded one peak also at 1st May with 43individuals/leaf. The last period of *A. gossypii* on the *P. guava* trees was extended from 30th Jul. to 3rd Sep 2015 with only one peak noticed at 13th Aug, with relatively low number of 12 individuals/leaf.

Weeds and wild plant hosts:

The occurrence and annual dynamic of *A. gossypii* population will be discussed only on main wild/weeds hosts that colonized by 5.023% to 1.739 % of total numbers of aphids on all investigated hosts at study location as follows:

Common purslane, Pertulaca oleracea:

The cotton aphids, *A. gossypii* found infested purslane plants in five occurrence periods Fig (3), the 1st one extended from 28th Nov. tell 26th Dec 2013.on old plants and listed one peak at 5th Dec. with 18 individuals/shots this period was extension to the last occurrence period of previous year. The 2nd period was expanded from 11th Apr. to 9th May 2014 on purslane plants seedlings with one peak of 22 individuals/ seedling recorded at 25th Apr., then the population decline to restart again in the 3rd period from 11th July to 5th Dec. 2014 recorded three peaks at 15th Aug., 27th Sep. and 15th Nov. with 67, 29 and 35 individuals/shots for the three peaks, respectively. The 4th period of was extensive from 18th Apr. to 15th May 2015

with one peak of 15 individuals/ seedling at 1st May. The last period extended from 3rd Jun. to 3rd Dec. 2015 with two equal peaks in numbers of 69 individuals/shots recorded at 26th Jun and 3rd Sep., respectively. So this plant considered as one of the important plant host of cotton aphids especially during the early and late growth season of purslane plants.

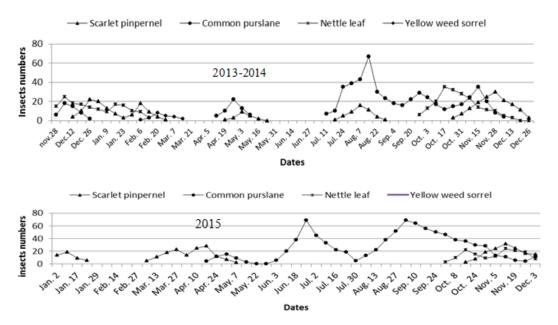


Fig. 3: Population dynamics of cotton aphids on weeds specific plant hosts at Zagazig region during the period extended from 28, Nov.2013 till 3, Dec. 2015.

Little mallow, Malva parriflera:

The cotton aphids, *A. gossypii* found infested Little mallow plants in three occurrence periods Fig. (1), the 1st one expanded from 18 Nov. 2013 tell 19 Apr. 2014 and listed three peaks recorded at 20th Dec 2013, 20th Feb. 2014 and 21st March 2014 with 32,47and 19 individuals/leaf for the three peaks respectively; this period was extension to the last occurrence period of 2013. The 2nd period was extended from 20th Sep. 2014 to 7th May 2015 on *M. parriflera* plants with four peaks of 63, 42, 66 and 65 individuals/ leaf registered at 17th Oct., 21st Nov.2014, 17th Jan. and 7th Mar. 2015, respectively; then the population decline to restart again in new growth season to record the 3rd occurrence period from 24th Oct.2015 to end of study period at 3rd Dec. 2015 recorded one peak at 13th Nov. with 50 individuals/leaf. So, the little mallow plants considered as one of the important hosts of cotton aphids throughout its growth season.

Scarlet pimpernel Anagallis arvensis:

The scarlet pimpernel, *A. arvensis* found harbored *A. gossypii* in five activity periods Fig. (3), the 1st one expanded from 12th Dec. 2013 tell 20th Feb. 2014 and listed two peaks at 26th Dec 2013 and 6th Feb.2014 with 22 and 18 individuals/shots for the two peaks, respectively; this period was extension to the last occurrence period of 2013. The 2nd period was registered from 19th Apr. to 16th May 2014 on *A. arvensis* plants with one weak peak of 9 individuals/ shots recorded at 3rd May.2014. The 3rd period extended from 24th Oct.2014 to 23rd Jan. listed one peak at 28th Nov. 2014 with 30 individuals/shots. The 4th period was presented from 7th Mar. to 7th May 2015 with two peaks of 23 and 28 individuals/ shots recorded at 27th March and 18th Apr. respectively. The last occurrence period was registered from 15th Oct. to

the end of study period at 3rd Dec. 2015 drown one peak of 32 individuals/ shots at 13th Nov. 2015.

Yellow weed sorrel, Oxalis corniculata:

The perennial weed yellow weed sorrel, *O. corniculata* which grow in the shadow area, found harbored *A. gossypii* in four activity periods Fig. (3), the 1st one extended from 5th Apr. tell 6th Jun 2014.on old plants and recorded one peak at 9th May. with 17 individuals/shots. The 2nd period was expanded from 27th Sep. to 15th Nov. 2014 with one peak of 18 individuals/ shots listed at 17th Oct., then the population decline to restart again in the 3rd period from 13th Mar. to 22nd May. 2015 listed one peak at 18th Apr. with 37 individuals/shots. The 4th period was expanded from 15th Oct. to 26th Nov 2015 with one peak at 5th Nov. with 16 individuals/shots.

Ploughman's spikenard. Conyza discorides L.:

The illustrated data in Fig. (4) cleared that the ploughman spikenard, *C. discorides* found harbored cotton aphids, *A. gossypii* in three occurrence periods, the 1st one extended from 28 Nov. 2013 tell 23 Jan. 2014, recorded one peak at 12th Dec 2013 with 52 individuals/leaf; this period was extension to the last activity period of 2013. The 2nd period was expanded from 3rd Oct. to 26th Dec 2014 with one weak peak of 42 individuals/ leaf recorded at 31st Oct.2014. The 3rd period was from 29th Oct.2014 to 3rd Dec 2015 recorded one peak at 19 Nov. with 34 individuals / leaf.

The *Ch. murale* plants found harbored *A. gossypii* in three activity periods Fig. (4), the 1st one which was extension to the last activity period of 2013 recorded from 28th Nov. 2013 till 13th Feb. 2014 recorded two peaks at 5th Dec 2013 And 16th Jan 2014 with 25 and 17 individuals/leaf for the two peaks, respectively. The 2nd period was from 27th Sep. to 13th Dec 2014 with one peak at 17th Oct. with 35 individuals/leaf. The 3rd period extended from 1st Oct. to 3rd Dec 2015 .recorded two peaks at 15th Oct. and 13th Nov. with 22 and 24 individuals / leaf for the two peaks, respectively.

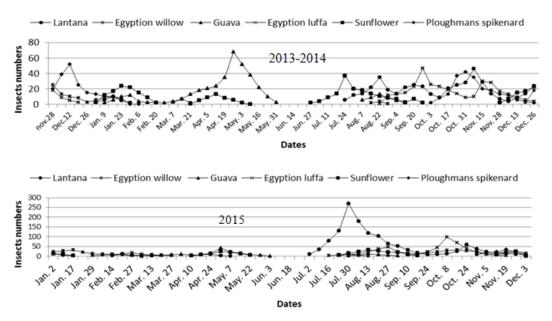


Fig. 4: Population dynamics of cotton aphids on wild specific plant hosts at Zagazig region during the period extended from 28, Nov.2013 till 3, Dec. 2015.

Nettle leaf or goosefoot, Chenopodium murale: Water melon, Citrullus vulgaris:

The water melon, *C. vulgaris* which inspected as weeds/wild plants found in/out cultivated fields, where it is not cultivated as commercial crop in the study area found infested by *A. gossypii* in four occurrence periods. The 1st one was extension to the last occurrence period of 2013 extended tell 12th Dec. 2013, where 35 individuals/leaf was recorded firstly and then the population decreased. The 2nd period was extended from 24th Jul. to 20th Sep. 2014 with one peak of 40 individuals/leaf recorded at 22nd Aug, and then the population reduced to restart again at the third and short occurrence period from 24th Oct. to 28th Nov. 2014 recorded one peak at 7th Nov. with 28 individuals/leaf. The 4th occurrence period was extended from 26th Jun. to 26th Nov 2015 with three peaks noticed at 16th Jul, 17th Sep. and 13 Nov. with 36, 70 and14 individuals/leaf for the three peaks, respectively.

The Egyptian willow trees, Salix subcerrata:

The newly twigs of Egyptian willow, *S. subcerrata* trees found harbored *A. gossypii* in six occurrence periods, the 1st one which was extension to the last occurrence period of 2013 till 30 Jan 2014 started with 25 individuals/twig and then oscillated till disappeared at the end of period. The population of *A. gossypii* was oscillated in very low numbers at the tow temporary periods (3&4) from 7th to 21st Mar. 2014 and from 15th to 29th Aug. 2014 without cleared peaks. The 4th period was extended from 19th Dec. 2014 to 27th Mar. 2015 with two relatively weak peaks of 32 and 8 individuals/ twig listed at 17th Jan. and 13th Mar. for the two recorded peaks, respectively. The temporary 5th occurrence period noticed from 16th Jul. to 13th Aug. 2015 then the population decline to restart again in the last occurrence period extended from 10th Sep. to 19th Nov. 2015 with one peak of 32 individuals / twig recorded at 15th Oct 2015 on *S. subcerrata* trees.

The obtained results found in harmony with those of Rattanapum, (2012) and Rahman et al., (2009) who recorded Aphis gossypii on eggplant (bringal), Solanum melongena. Also, Bodlah, et al., (2011) recorded Rosa sp, Gossypium sp., are within host plants range of A. gossypii. Ekukole, (1990), mentioned that the cotton and okra were most seriously infested with A. gossypii in Cameron. Godfrey & fuson, (2001), Who reared A. gossypii on cucumis melo L. sub sp. Melo var. cantalupensis Naudin with good population growth. Rodriguez and Jeannette, (2007); Liu et al., (2008) and Alikhani, et al., (2010) reported that the two plant families of malvaceae and cucurabitaceae include the major hosts of A. gossypii, Hibiscus trionum, Cucurbita sp., Cucumis melo, C. sativus, Malva neglecta. Satar, et al., (1999), reported that the cotton aphids reared on three malavaceae hosts, Gossypium hirsotum, Malva sylvestris and Abelmoschus esculentus (L.) with significant variation in biological aspects of insects. Hale et al., (2009) recorded that the A. gossypii has wide host range, watermelon, cucumber, cantaloupe, squash, pumpkin, asparagus, spinash, bean, beet, cowpea, tomato, pepper, eggplant, okra, citrus, cotton, hibiscus and many weeds such as jimson weed and pigweed. Smith et al. (2006) recorded A. gossypii on Chenopodium sp. Citrulus volgaris. Attia and El-Hamaky (1992) found A. gossypii attacking leaves of the vegetable crops; marrow, okra, watermelon, cantaloupe and cucumber from March to May and guava leaves from March to November. This species migrated to overwinter on marrow and garden purslane weeds. Attia, et al., (1985) recorded that the A. gossypii infested guava during February/September .Mohamad- Zeinab (1984) found A. gossypii infested Avena fatua, Malva parviflora, Portulaca oleracea and Convolvulus arvensis plants. Megahed, (2000) found A. gossypii infested Conyza dioscorides L., Partulaca oleracea L., Prassica

nigra L., Solanum nigrum L., Rummex dentatus L. Cyprerus spp. Beta vulgaris, Chenopodium spp. Anagullis arvensis L., Daucus carota L., Urtica acutum L. Oxalis corniculata.

REFERENCES

- Alikhani, M; A. Rezwani; E. Rakhshani and S. M. J. Madani (2010): Survey of aphids (Hem., Aphidoidea) and their host plants in central parts of Iran J. of Ent. Res. 2 (2): 7-16
- Attia, A. A. (1967): Aphids infesting stone fruit trees in Egypt, with special reference to mealy plum aphid, *Hyalopterus pruni* (Geoffry) (Homoptera Aphididae). (Msc Thesis, Fac. Agric. Ain. Shams Univ. Egypt.
- Attia, A. A. and M. A. EL-Hamaky (1991): aphid species in Sinai governorate, Egypt. Bull, Ent. Soc. Egypt, 70: 195-206.
- Attia, A. A.; S. El-Nagar and I. I. Ismail (1985): Seasonal Abundance of *Aphis gossypii* Glover on Certain Fruit Trees. Bull, Ent. Soc. Egypte, 65: 27-32.
- Azize, T. K.; G. Gazi and F. Çota (2008): Contribution to the Aphid (Homoptera:Aphididae) Species Damaging on Woody Plants in Bartın, Turkey. Int. J. Nat&Eng. Sci. 2(1): 83-86.
- Blackman, R. L. and V. F. Eastop (2000): Aphids on the World's Crops: an identification and information guide 2nd edition. John Wiley & Sons, Ltd., Chinchester, UK.466pp.
- Bodlah, I.; M. Naeem and A. Mohsin (2011): Checklist distribution host range and ecology of Aphidoidea (Homoptera) from the rain fed region of Punjab province of Pakistan. Sarhad j. agric., 27 (1): 93
- Boulos, L. and M. N. El-Hadidi (1967): Commmon weeds in Egypt. (Dar Al-Maaref, Cairo, Egypt, 150 plates).
- Ekukole, G. (1990): Effect of some selected plants on the fecundity of *Aphis gossypii* Glover under laboratory conditions. Cotton ET Fibers Tropicales, 45, 263-266.
- Godfrey, L. D. and K. J. Fuson (2001): Arthropod management Environmental and Host Plant Effects on Insecticide Susceptibility of the Cotton Aphid (Homoptera: Aphididae). J. Cott. Sci., 5:22-29
- Habib, A. and E. A. El Kady (1961): The aphididae of Egypt. (Bul. Soc. Ent. Egypte, 45:1-137.
- Hale, F. A.; I. Deal and J. F. Grant (2009) Vegetable Pests Melon Aphid. The University of Tennessee Agricultural Extension Service, W207-4/09 09-0137.
- Hall, W. J. (1926): Notes on the aphididae of Egypt. Tech. and Sci. Serv. Min. Agric. Egypt, BULL., 68: 1-62.
- Harakly, F. A. (1975): Aphids infesting truck crops in Egypt. Agric. Res. Rev., 53. 1: 161-166).
- Ibrahim, M. M. A. (2001): Studies on some piercing-sucking insect pests infesting cotton plants. Ph.D Thesis Fac . Agric. Zag. Univ. 198 pp.
- Jazzar, C. and E.A.F. Hammad (2003): The efficacy of enhanced aqueous extract of *Melia azadirachta* leaves and fruits integrated with the *Camptotylus reuteri* releases against the sweet potato white fly nymphs. Bull. Insectol., 56:269-275.
- Liu, X. D.; B. P. Zhai; X. X. Zhang (2008): Specialized host-plant performance of the cotton aphid is altered by experience. Eco. Res., 23(5): 919-925.
- Megahed, H. E. (2000): Studies on aphids . Ph.D. Thesis Fac. Agric. Zagazig Univ. Egypt.
- Mohamed, A. zeinab (1984). Studies on aphids in Sharkia region. Ph.D Thesis, Fac. of Agric. Zagazig Univ.
- Rahman, M. M.; P. K. Sarker and B. C. Das (2009): Intrinsic rate of increase (rm) of

- aphis gossypii glover infesting brinjal plants J. Bio-sci. 17: 123-127
- Rattanapun, W. (2012): Host Plants Dependent Prey Suitability of Predatory Lady Beetles J. Entomol. Res. Soc., 14(3): 29-37
- Rodriguez, N. and A. Jeannette (2007): The cotton aphid *Aphis gossypii* in Australia : petroleum spray oils, endosymbiotic fauna and host-plant interactions PhD Thesis School of Integrative Biology University of Queensland 255 PP.
- Sánchez, M.V.; R. Agüero and C. Rivera (2002): Host plants of *Aphis gossypii* (Aphididae), vector of virus of *Cucumis melo* melon (Cucurbitaceae) in Costa Rica. Exp. Appl. Acarol., 27(4):297-302
- Satar, S.; U.Kersting and N. Uygun (1999): Development and Fecundity of *Aphis gossypii* Glover (Homoptera: Aphididae) on Three Malvaceae Hosts. Tr. J. of Agriculture and Forestry. 23: 637-643
- Shalaby, F. F. (1974): studies on insects associated with weeds. PhD. Thesis, Fac. Agric. Cairo Univ., Egypt
- Smith, T.; L. Wilson, S. Heimoana, G. Herron and B. Franzmann (2006): Overwinter host plants of Cotton Aphid (*Aphis gossypii*) and implications for managing abundance and resistance. Proc. the 13th Ann.Cot. Con. 8-10 Aug. 2006 Organised by ACGRA
- Willcocks, F. C. (1922): A survey of the more important economic insects and mites of Egypt. Sult. Agric. Soc. Agric. Cairo, Bull., 1: 482 PP.

ARABIC SUMMARY

تقابات تعداد حشرات من القطن Aphis gossypii على العوائل النباتية الاساسية والبديلة في محافظة الشرقية ، مصر

محمد محمد احمد ابراهيم و حمدي السعيد مجاهد معهد بحوث وقاية النباتات – مركز البحوث تالزراعية – الدقي- جيزة – مصر

اجريت هذه الدراسة في منطقة الزقازيق محافظة الشرقية على جميع النباتات والاشجار الموجودة في منطقة الدراسة خلال فترة امتدت من نهاية نوفمبر ٢٠١٣ وحتى بدية ديسمبر ٢٠١٥ لتحديد العوائل النباتية ونسبة وفترات التواجد السنوي لحشرات من القطن على العوائل النباتية الاقتصادية والنباتات البرية والحشائش للاستفادة من ذلك في اعداد برامج فعالة للادارة المتكاملة لحشرات من القطن .

اوضحت النتائج ان حشرات من القطن وجدت على مدى عوائلي واسع تمثل في ٣٧ نبات اقتصادي و ٢٣ نوع من النباتات البرية والحشائش تتبع كلها ٢٢ عائلة نباتية . سجلت اعلي نسبة تواجد ٢٨.٩ % علي نباتات العائلة الخبازية بينما كانت اقل نسبة ٢٠٠٩، سجلت علي نبات العائلة الزنبقية (الثوم). اختلفت نسب تواجد حشرات من القطن تبعا لاختلاف العائل النباتي حيث سجل اعلي نسبة تواجد ١٦٠٨١ % علي نباتات القطن تلاها نباتات الباميا ٢٥٤١ % بينما سجلت اقل نسبة ٢٠٠٠، % علي نبات السلق من الحشائش. اما بخصوص نسب التواجد علي النباتات البرية والحشائش فقد سجلت اعلى نسبة ٢٠٠٠، % علي نباتات الرجلة بينما سجلت اقل نسبة ٢٠٠١، % علي نباتات الحميض. وجد ان اطول مدة لتواجد حشرات من القطن كانت علي نباتات القطن وقد امتدت من بداية ابريل وحتى بداية وحد المدت من بداية المريك وحتى بداية المدين القطن كانت علي نباتات القطن وقد امتدت من بداية المريك وحتى بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن كانت على نباتات القطن وقد امتدت من بداية المدين القطن كانت على نباتات القطن وقد امتدت من بداية المدين المدين المدين المدين القطن وقد امتدت من بداية المدين القطن وقد امتدت من بداية المدين المد

وجد أن أطول مده للواجد حسرات من العص كانت علي لبانات العصل وقد أملنت من بداية الريل وحتى بداية اكتوبر ٢٠١٤ ومن بداية مايو وحتى منتصف اكتوبر ٢٠١٥ مسجلا أعلى قمة للتعداد ٣٢٠ فرد/ورقة في ١٥ اغسطس ٢٠١٤ تلاها القمة التي سجلت على نباتات الانتانا ٢٠٠ فرد/ورقة في ٣٠ يوليو .

وجد فترتين من النشاط محددة للحركة السنوية لمجموع حشرات من القطن حيث سجل المن خلالها علي عدد محدود من العوائل وباعداد منخفضة نسبيا ، امتدت الفترة الاولى من ٦ فبراير الي ٥ ابريل ٢٠١٤ وذلك علي ١٦ عائل نباتي فقط وتراوحت الكثافة العددية خلال هذه الفترة علي العوائل من فرد واحد/ورقة علي نباتات حشائش الزغلنت الي ٧٤ فرد/ورقة علي نباتات الخبيزة ، اما الفترة الثانية فقد امتدت من ٢ يناير وحتى ٢٠ فبراير ٢٠١٥ وذلك علي ١٤ عائل فقط وتراوح متوسط كثافة التعداد خلال الفترة من فرد واحد/ورقة علي نباتات حشائش كيس الراعي الي ٦٦ فرد/ورقة وهذا يعني ان هذه العوائل المتواجد عليها المن خلال هذه الفترات تلعب دورا هاما في عملية البعثرة والحركة السنوية لمجموع حشرات من القطن فيما بين العوائل الاساسية والبديلة خلال فترات النشاط.