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                 Entomopathogenic nematodes (EPNs) are biocontrol agents 

against various insect pests in the world for their characteristics of infectivity 

and compatibility with different control agents. Several environmental 

factors directly affect the EPN populations in the soil, as well as the 

resistance of certain insect pests to EPN penetration. Under these 

circumstances, EPNs cannot exhibit high virulence on the targeted insect 

pest; therefore, they should be applied in combination with some of the other 

control agents. In this context, the main objective of this review was to 

summarize the current knowledge on the compatibility of EPNs with various 

agrochemicals and examine the interactions of EPNs and these agents in 

combined application against insect pests. This review highlighted firstly the 

growing research attention worldwide concerning the compatibility of EPNs 

with other control agents. Then, the compatibility of EPNs with synthetic 

insecticides of different classes was reviewed. In this regard, also, some 

special attention has been paid to herbicides, fungicides and nematicidal 

compounds as possible compatible agents to EPNs. Later on, the current 

review discussed the importance of EPN application in combination with 

different insect growth regulators, juvenoids, ecdysteroids and chitin 

synthesis inhibitors. An overview of agricultural management practices and 

soil amendments in relation to EPNs was provided including the 

compatibility of EPNs with organic and inorganic fertilizers. Some attention 

has been paid to the EPN tolerance and susceptibility to heavy metals and 

other soil chemical pollutants, and EPNs as good bio-indicators of the 

environmental pollutants. The last aspect was the compatibility of EPNs with 

crude plant extracts and isolated phytochemicals. In conclusion, a 

combination of EPNs with compatible agrochemicals is a promising 

approach to the pest control strategy. EPNs may be combined with various 

compatible agrochemicals with additive, or preferably synergistic, effects on 

pest mortality. For this purpose, also, the exposure period should also be 

taken into consideration, because the exposure of EPNs to agrochemicals for 

a prolonged exposure period may turn their interaction to antagonistic and 

subsequently low control efficiency against the targeted insect due to the 

reduction of the EPN viability and infectivity. 
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     INTRODUCTION 

 

               Indiscriminate and repeated use of synthetic insecticides usually leads to several 

serious problems, such as environmental hazards, detrimentally toxicological effects on 

humans and development of the insect resistance toward different insecticides of various 

classes (Rose, 2001; Davies et al., 2007; Mosallanejad and Smagghe, 2009; Yarahmadi et 

al., 2009; Sharifian et al., 2012). Besides contaminating the environment, including the soil 

and water, insecticide residues deleteriously affect the natural enemies and useful organisms 

like earth worms, bees, spiders, and plants (Costa et al., 2008; Aktar et al., 2009; Singh et 

al., 2014; Pertile et al., 2020; Pelosi et al., 2021). They also reduce some characteristics of 

animals, such as immunity to diseases, vitality, and the success of mating (Syromyatnikov 

et al., 2020). In addition, nutrient reduction and an increased disease incidence are quite 

common in crops grown on soils heavily treated with synthetic insecticides (Tripathi et al., 

2020). 

             Therefore, biocontrol agents represent a better alternative to synthetic insecticides, 

because the bioagents are target-specific, easily biodegradable in the environment, and can 

be friendly used for sustainable pest management (Sayyed and Patel, 2011; Kumar and 

Singh, 2015; Kumar et al., 2021). The major groups of microorganisms, used as biocontrol 

agents, include some bacterial genera, fungal genera and entomopathogenic nematodes 

(EPNs), particularly those belonging to the families Steinernematidae and Heterorhabditidae 

(Chang et al., 2003; Sporleder and Lacey, 2021; Liu et al., 2021; Adeleke et al., 2022). 

            Entomopathogens that occur naturally are important control agents for controlling 

insect pests (Roy and Cottrell, 2008). The word "entomopathogens" was coined by Tanzini 

et al. (2001) to describe the microorganisms that regulate the populations of insect pests to 

the levels wherein no economic damage to economic plants is observed. Entomopathogens 

and their products are simple to produce and apply, highly effective, persistent, and eco-

friendly (Ruiu, 2018; Ayilara et al., 2023) leading to acceptance of their worldwide use in 

pest management strategies (Lehr, 2014; Chattopadhyay et al., 2017; Chen, 2018; Essiedu 

et al., 2020; Essiedu et al., 2020; Liu et al., 2021). However, several authors (Chattopadhyay 

et al., 2017; Ruiu, 2018; Kumar et al., 2021; Ayilara et al., 2023) have preferred the term 

"Biopesticides" to describe several groups of biocontrol agents including the 

entomopathogens which are frequently reported to be an efficient tool for the insect pests. 

             For nematodes, the term "entomopathogenic" means (causing disease to insects) and 

is mainly used in reference to the endosymbiotic bacteria Xenorhabdus spp. (mutually 

associated with EPN Steinernema spp.) and Photorhabdus spp. (mutually associated with 

EPN Heterorhabditis spp.)(Boemare, 2002). These bacterial symbionts exist in the intestines 

of the infective juveniles (IJs) of EPNs. Once entering the body cavity of potential host larvae 

through the mouth, anus and spiracles or some membranous areas of the body wall, IJs 

release their symbiotic bacteria to attack the viscera of the insect, bring about general sepsis 

and then use putrefied organs of the insect as nutrients for EPNs (Adams and Nguyen, 2002). 

Also, these bacteria produce some toxins and share in the overcoming of the host's immune 

system and ultimately kill the insect host within 72 h (Simoes et al., 2000; Duchaud et al., 

2003; Chaston et al., 2011). Thus, these symbiotic bacteria can be considered one of the 

main factors involved in EPN infectivity (Tarasco et al., 2023). For more detail, see reviews 

of Ghoneim and Bakr (2024) and Ghoneim and Hassan (2024). 

             Because of their traits and characteristics, such as adaptability to various habitats, 

wide range of insect hosts, excellent ability at searching hosts, easy mass production and 

ability to resist some chemical pesticides, EPNs can be considered excellent biocontrol 

agents over other agents against various insect pests, particularly of soil and cryptic habitats 

(Koppenhöfer et al., 2002; Shapiro-Illan et al., 2012; Kulkarni, 2017; Paunikarand Kulkarni, 
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2020; Yadav et al., 2023). One of the most important attributes of EPNs is their 

compatibility/tolerance to a number of biopesticides, insecticides herbicides, acaricides, 

nematicides, fertilizers and pathogens (De Nardo and Grewal, 2003; Koppenhofer and 

Grewal, 2005; Kulkarni et al., 2009; Paunikar et al., 2012; Laznik and Tredan, 2014; Chavan 

et al., 2018; Devi, 2019). 

               On the other hand, several environmental factors directly affect EPN populations 

in the soil, such as humidity and temperature (Dolinski et al., 2017), as well as environmental 

extremes or the resistance of certain insect pests to EPN penetration (Lewis et al., 2006; 

Georgis et al., 2006; Poinar and Grewal, 2012). Under these circumstances, the use of EPNs 

alone to control insect pests on foliage results in poor or moderate levels of pest control 

(Toepfer et al., 2014; Brida et al., 2018). The combination of EPNs with other control agents 

can enhance the control efficacy against the targeted pest, with greater cost-reduction in 

application time required (Koppenhofer and Grewal, 2005). In other words, EPNs can be 

applied in combination with other control agents as a strategy for providing cost-effective, 

time-saving and long-lasting pest control (Abd-Elgawad, 2019; Özdemir et al., 2020a). 

Thus, the main goal of this strategy is the enhancement of EPN effectiveness for more 

efficient control (Koppenhöfer and Grewal, 2005; Bajc et al., 2017). In this context, the main 

objective of the present review was to summarize the current knowledge on the compatibility 

of EPNs with various agrochemicals and examine the interactions of EPNs and various 

agrochemicals in combined application as a more efficient control strategy against insect 

pests. 

1. Compatibility of EPNs with Other Control Agents- Growing Research Attention in 

the World: 

              Compatibility of EPNs with agrochemicals has been widely investigated in the 

world (Chen et al., 2003; Gutierrez et al., 2008; Laznik et al., 2012; Laznik and Trdan, 2014; 

Mahmoud et al., 2016; Garriga et al., 2019; Koppenhöfer et al., 2020; Kruk and 

Dziêgielewska, 2020; Askary and Ahmad, 2020; Nalinci et al., 2021 Kumar et al., 2022). It 

is important to point out that the EPN combinations with other control agents may result in 

additive, synergistic, or antagonistic interaction (De Nardo and Grewal, 2003; Laznik et al., 

2012). A synergistic effect appears when two or more control agents combine to produce a 

greater effect than the effect if each agent was applied alone (Ansari et al., 2005, 2008; Devi, 

2019). On the other hand, an antagonist interaction occurs when two control agents cancel 

or reduce each other out. Direct antagonism is the infection or predation of EPNs by another 

organism, whereas indirect antagonism occurs during competition (either interference or 

exploitation) for resources and spaces (Kaya, 2002). In addition, an additive effect of two or 

more control agents combines and produces a total effect equal to the sum of the effects of 

each individual agent in the reaction (Ansari et al., 2005, 2008; Mahmoud et al., 2016).  

              To understand this necessary approach for successful EPN application against insect 

pests, several environmental factors directly influence EPN populations in the soil, such as 

humidity and temperature (Dolinski et al., 2017), as well as environmental extremes or the 

resistance of certain insect pests to EPN penetration (Lewis et al., 2006; Georgis et al., 2006; 

Toepfer et al., 2014). As, other factors may affect the presence of the infective juveniles (IJs) 

of EPNs in the soil since these organisms live in an environment thatcontinuously receives 

the addition of agrochemical compounds that will influence their survival (Poinar and 

Grewal, 2012; Brida et al., 2018). Whereas, some authors (Sabino et al., 2017; Chergui 

et al., 2019) reported that IJs can remain viable when in contact with several chemical 

compounds.  

              Under these circumstances, the use of EPNs alone to control insect pests on foliage 

results in poor or moderate levels of pest control (Vyas et al., 2003). Combination of EPNs 

with other control agents can enhance the control efficacy against the targeted pest, with 
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greater cost reduction in application time required (Koppenhofer and Grewal, 2005). In other 

words, EPNs can be applied in combination with other control agents as a strategy for 

providing cost-effective, time-saving and long-lasting pest control (Abd-Elgawad, 2019; 

Özdemir et al., 2020a). This promising approach is also called a ‘dual attack’ approach 

(Stiling, 1992). Therefore, many investigators have paid attention to evaluating the EPNs 

combinations with insecticides (Koppenhofer et al., 2000; Sheykhnejad et al., 2014), 

biocontrol agents (Koppenhofer et al., 1999; Wu et al., 2014), and parasitoids (Lacey et al., 

2001; Atwa et al., 2013). 

               In this context, also, many studies have alsofound the IJs of EPNsaretolerant to 

short exposures (2-6 h) of many insecticides, acaricides, fungicides and herbicides and insect 

growth regulators (Laznik and Trdan, 2014). Therefore, EPN can be tank-mixed and applied 

together with such compounds (Koppenhöfer and Grewal, 2005; Radova, 2010; Viteri et al., 

2018). This tolerance of IJsto insecticides may be due to the occurrence of two exterior 

epidermal layers, as well as the oral and anal apertures of IJs beingclosed during dormancy, 

preventing hazardous chemicals and other objects from entering their bodies (Campbell and 

Gaugler, 1991). These IJs do not eat during this period; therefore, their survival depends on 

internalenergy sources (reserves). IJs' ability to survive during the dormancy period is thus 

determined by their metabolism and internal energy reserves which support physiological 

and behavioral processes associated with environmental stress adjustment (Glazer, 2002).  

2. Compatibility EPNs with Synthetic Insecticides: 

2.1.Basic Knowledge:  

              Firstly, pesticides can be classified based on their active ingredients, functions, and 

sources. According to their active ingredients, pesticides are classified into organochlorines, 

carbamates, organophosphates, neonicotinoids, pyrethroids, etc. Functionally, they can be 

classified into insecticides, herbicides, fungicides, algicides, rodenticides, etc. According to 

their sources, pesticides are classified into synthetic pesticides and biopesticides (Ayilara et 

al., 2023).  

            Several studies have been conducted on whether insecticides can be combined with 

other ingredients, such as fertilizers, microbial control agents, and other chemical pesticides 

(Koppenhöfer et al., 2000; Gutiérrez et al., 2008; Laznik et al., 2012; Laznik and Trdan, 

2014; Ulu et al., 2016; Şahin and Susurluk, 2018). Over the past few decades, there has been 

increasing evidence that the combinations of chemical insecticides with biocontrol agents 

represent a strategy to provide more effective pest control, particularly when both agents 

interact synergistically. One category of biocontrol agents that appear to be compatible with 

various chemical insecticides is EPNs (Koppenhofer and Grewal, 2005; Koppenhöfer and 

Fuzy, 2008; Khan et al., 2018). Therefore, several studies used the local EPN species and 

isolates to test their pathogenicity on serious insect pests and their compatibility with some 

registered pesticides to design more sustainable pest management programs (Baimey et al., 

2015; Ferreira et al., 2016; Laznik and Trdan, 2017; Sabino et al., 2019; Khan et al., 2020; 

Özdemir et al., 2020b; Koppenhöfer et al., 2020). 

              Now, it is important to review the results of several studies focusing on this aspect 

of efficient control approach, since many EPNs belonging to the families Steinernematidae 

and Heterorhabditidae have been found to survive under exposure to different chemical 

pesticides (Koppenhöfer et al., 2002; De Nardo and Grewal, 2003; Schroer et al., 2005; 

Laznik et al., 2012; Laznik and Trdan, 2014; Ulu et al., 2016). For example, the 

compatibility of the EPNs Steinernema spp. and Heterorhabditis spp. with various 

insecticides has been extensively investigated by many researchers (Sunanda et al., 2014; 

Mohan, 2015; Kary et al., 2018; Hassan and Ibrahim, 2019; Sabino et al., 2019). Moreover, 

there are no difficulties in applying EPNs via different techniques and they can be combined 

with various chemical compounds (Mahmoud and Pomazkov, 2004; Mahmoud, 2007; 
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Lanzoni et al., 2014). 

              The available literature includes, also, a study on the direct application of the EPN 

Steinernema carpocapsae with pesticides at the recommended dose. The pesticides had no 

adverse effect on the EPN viability at room temperature after 3 h of exposure (Alumai and 

Grewal, 2004). Moreover, another study indicated that some chemical insecticides, at 

recommended doses, had no serious effect on EPN survival even after 72 h of exposure 

(Mahmoud et al., 2006). Similarly, De Nardo and Grewal (2003) investigated the 

compatibility of EPN Steinernema feltiae with different pesticides, in glasshouses. Based on 

their results, the EPN viability was more than 80% with all the pesticides even after 72 h of 

exposure. 

              For some detail, the combined application of a mixture of EPNs and some 

insecticides caused a significant increase in mortality of the fall armyworm Spodoptera 

frugiperda (Lepidoptera: Noctuidae). A synergistic or additive effect can be expected 

between EPNs and the insecticides (Bernardi et al., 2010). Negrisoli et al. (2010) evaluated 

the efficacy of EPNs in combination with some insecticides to control the same insect pest 

in corn crops and recorded synergistic and additive interactions between EPN species and 

insecticides. According to Atwa (2013), the EPNs Heterorhabditis bacteriophora and 

Steinernema spp. were compatible with different pesticides tested against the Egyptian 

cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) and therefore EPNs-

insecticide mixtures can be used in an integrated pest management (IPM) system. 

               Against the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae), EPN S. 

carpocapsae was effective outside the tomato leaves not inside. This may be due to the EPN 

susceptibility to some abiotic factors in addition to the presence of larvae within tunnels. In 

this case, EPN can be combined with a registered insecticide to facilitate or enhance its 

control effectiveness (Türköz and Kaşkavalci, 2016). Two years later, Sabino et al. (2018) 

evaluated the susceptibility of combined EPN Heterorhabditis amazonensis JPM4 with 

different insecticides to control the same insect in a tomato crop and recommended this 

approach for reducing the inappropriate use of insecticides against larvae. Also, El-Ashry 

and Ramadan (2021) reported that the efficacy of EPNs to control the scarab beetle Pentodon 

bispinosus (Coleoptera: Scarabaeidae) can be induced by the combination with commonly 

applied insecticides. For more examples, see Yan et al. (2012), Kulkarni et al. (2013), Patil 

et al. (2015), Gangadhara et al. (2019), Devi (2019), El-Ashry et al. (2020) and Khan et al. 

(2021).  

                Another point of concern in this context is the exposure period because some 

authors (Monteiro et al., 2014; Yadav et al., 2017; Khan et al., 2018) reported that the 

prolonged exposure period to the EPNs alone, and in combination with insecticides, have 

proven to increase mortality of the insect larvae (Monteiro et al., 2014; Yadav et al., 2017; 

Khan et al., 2018). However, this point of view will be discussed in the following section 

entitled "Serious challenges of successful EPN-insecticide combinations". 

               It should be kept in mind that the main goal of this strategy is the enhancement of 

EPN effectiveness for more efficient control of certain insect pests on the plants (Negrisoli 

et al., 2010; Laznik et al., 2012; Laznik and Trdan, 2014; Monteiro et al., 2014; Yadav et 

al., 2017; Garriga et al., 2019; Koppenhöfer et al., 2020; Yan et al., 2020; Nalinci et al., 

2021). In addition, this strategy has been applied to provide an understanding of how the 

naturally occurring EPN in soils can be better preserved in agroecosystems (Barbosa-

Negrisoli et al., 2009; Yan et al., 2012; Yuksel et al., 2019). 

2.2. EPN Compatibility with Insecticides of Class Organophosphates:  

               Globally, EPN compatibility has been tested with well over 100 different chemical 

pesticides (Vashisth et al., 2013). Through the following sections, we will review the 

currently available studies on EPN combinations with various registered insecticides 
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according to the major classes. Based on the current literature, there is a growing attention 

of researchers worldwide for assessing the combinations of EPNs with different 

organophosphate insecticides. For instance, De Nardo and Grewal (2003) investigated the 

interaction between EPN S. feltiae and acephate. They recorded a compatibility with no loss 

in viability and infectivity up to 24 h of exposure and viability was more than 80% even after 

72 h of exposure. Studies carried out by some investigators showed low IJ mortality of EPN 

S. carpocapsae when exposed to chlorpyrifos (Alumai and Grewal, 2004; Gutierrez et al., 

2008). Similarly, many authors reported low IJ mortality of EPN H. amazonensis with 

certain insecticides including chlorpyrifos (Chen et al., 2003; Gutierrez et al., 2008; Kruk 

and Dziêgielewska, 2020). Also, Negrisoli et al. (2010) reported that chlorpyrifos was 

compatible with H. indica, S. carpocapsae and S. glaseri under laboratory conditions. In 

addition, chlorpyrifos-ethyldid not reduce the survival of EPNs S. carpocapsae and S. glaseri 

for the control of S. frugiperda (Monteiro et al., 2014; Ulu et al., 2016).  

                  In a study of Negrisoli et al. (2010), the additive interaction between S. 

carpocapsae and chlorpyrifos, and the synergistic effect of chlorpyrifos with S. glaseri, were 

recorded for the control of S. frugiperda. They reported that the interactions of H. indica, S. 

carpocapsae and. glaseri with chlorpyrifos depended on the formulation and the tested 

concentration. In Egypt, Askary and Ahmad (2020) found the EPN H. pakistanensis (3.0 

lakh IJs/m2) + dichlorvos 76 EC (0.025%) causing the highest larval mortality (79.65%) of 

the cabbage butterfly Pieris brassicae (Lepidoptera: Pieridae) under field conditions. This 

result agreed with some reported results of several authors at lower doses and short-term 

exposure where EPNs were compatible with dichlorvos (Zhang et al.,1994). In a field study 

of Kumar et al. (2022), the EPN Steinernema asiaticumand malathion 50 EC, singly or in 

combination, were applied against the diamondback moth Plutella xylostella (Lepidoptera: 

Plutellidae) larvae. Depending on their results, the highest larval mortality (37.5%) was 

obtained by using EPN at 25,000 per plant in combination with half the recommended 

concentration of malathion (0.025%) leading to a synergistic effect. For more examples, see 

Table (1). 

                On the contrary, some reports indicated several organophosphate insecticides are 

very toxic to the survival of many EPNs of various families (Rovesti and Deseö, 1990; 

Gordon et al., 1996; Nishimatsu and Jackson, 1998; Shivamuthuprakash et al., 2011). For 

example, chlorpyrifos exhibited an undetectable effect on the viability of S. feltiae and H. 

bacteriophora (Peters and Poullot, 2004), but the susceptibility of S. feltiae was more 

affected than H. bacteriophora (Devindrappa et al., 2017; Raheel et al., 2017). Fenitrothion 

(Sumithion Super®) and chlorpyrifos (Dursban 10 G®) were tested by Nermuť and Mráček 

(2010) against certain steinernematid EPNs. These insecticides caused marginally lower 

infectivity of EPNs and higher EPN mortality, respectively, in comparison with different 

pesticides.  

                 In Egypt, El-Ashry et al. (2020) evaluated the mixing of chlorpyrifos (Pestban 

48% EC), chlorpyrifos (Tafaban 48% EC) and fenamiphos with five EPNs S. carpocapsae, 

S. feltiae, S. glaseri, H. bacteriophora and H. bacteriophora for the control of tomato fruit 

borer Helicoverpaarmigera (Lepidoptera: Noctuidae). Depending on their results, these 

pesticides with IJs of EPNs showed an additive or antagonistic interaction. Devi (2022) 

conducted a laboratory study to evaluate the compatibility of H. bacteriophora with 

"Tricel" (chlorpyriphos 20% EC), insecticidal compounds currently used against cutworm 

Agrotis ipsilon (Lepidoptera: Noctuidae). His results showed that the survival rate of EPN 

exposed to chlorpyriphos was reduced to 50%. Also, EPN infectious ability and reproduction 

rate in A. Ipsilon were reduced by exposure to chlorpyriphos. Combinations of S. feltiae or 

S. carpocapsae with sublethal concentrations of fenamiphos resulted in a reduction of the 

EPN infectivity. This may be due to the impaired ability of IJs to locate the host, affecting 
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locomotion and possibly sensory perception, and therefore reducing EPN pathogenicity 

(Patel and Wright, 1996). For more examples, see Table (1). 

 

Table 1. Compatibility of entomopathogenic nematodes (EPNs) with some organophosphate 

insecticides in combined applications. 
EPN Insecticide Insect Result Reference(s) 

Steinernema carpocapsae Chlorpyrifos Spodoptera 

frugiperda 

Higher virulence Negrisoli et al. 

(2010) 

Heterorhabditis 

bacteriophora, H. indica and 

Steinernema longicaudum 

Chlorpyrifos Holotrichia 

parallela 

Additive mortal 

effect 

YuDong et al. (2012) 

S. feltiae Chlorpyrifos Spodoptera 

littoralis 

No adverse 

effect on 

survival but 

reduction of 

virulence 

Gutiérrez et al. 

(2008) 

Heterorhabditis amazonensis Chlorphenvinphos 

and dichlorvos 

S.littoralis High mortality 

of larvae 

Gutiérrez et al. 

(2008) 

H. bacteriophora HB and 

Steinernema brazilense (IBCB- 

n06) 

Malathion and 

Phosmet 

Ceratitis 

capitata 

The highest 

mortality of 

larvae 

Jean-Baptiste et al. 

(2021) 

Steinernema abbasi (CISH 

EPN-1) 

Bifenthrin Galleria 

mellonella 

No adverse 

effect on EPN 

survival 

Kesava et al. (2015) 

H. amazonensis Chlorphenvinphos 

and Dichlorvos 

S.littoralis High mortality 

of EPN 

Chen et al. (2003), 

Gutierrez et al. 

(2008), Kruk and 

Dziêgielewska 

(2020) 

H. bacteriophora (HP88 

strain) and S. carpocapsae (All 

strains) 

Fenamiphos G. mellonella IJs mortality and 

reduced viability 

El-Ashry and El-

Marzoky (2018) 

S. carpocapsae Trichlorfon Spodoptera 

litura 

Reduced 

infectivity 

Zhang et al. (1994) 

H. bacteriophora HP88 Trichlorfon G. mellonella Reduced 

viability and 

pathogenicity 

Alumai and Grewal, 

(2004) 

S. abbasi (CISH EPN-1) Dichlorvos G. mellonella Higher mortality 

of EPN 

Kesava et al. (2015) 

 

2.3. EPN Compatibility with Insecticides of Class Neonicotinoids: 

                 Depending on the incubation period, as observed with H. bacteriophora agitated 

in solutions of imidacloprid for 24 h, no negative effect has been observed on the EPN 

survival and infectivity (Koppenhofer and Kaya, 1998). As evaluated by Alumai and Grewal 

(2004), imidacloprid exhibited no drastic effect on H. bacteriophora viability. Also, 

thiamethoxam and imidacloprid had no significant effects on S. carpocapsae pathogenicity. 

Moreover, imidacloprid, at the recommended rate (330/440 g AI/ha), significantly enhanced 

the H. bacteriophora pathogenicity at 500 and 300 L/ha application volumes. Although 

mixing imidacloprid (0.04:1.25%) with EPN S. feltiae SN caused 3.5% mortality (Patil et 

al., 2015), the decreasing application rate of imidacloprid led to the enhancement of the EPN 

efficacy by deleting the toxic effect (Yan et al., 2019). In their study, Wu et al. (2017) 

concluded that the combination of EPNs and thiamethoxam significantly increases the 

mortality (90%) of the subterranean insectBradysiaodoriphaga (Diptera: Sciaridae) larvae 

for up to six weeks. To control the red palm weevil Rhynchophorus ferrugineus (Coleoptera: 

Curculionidae), Arshad et al. (2020) combined EPN H. indica with imidacloprid. Based on 
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their results, the mortality rate in the early three larval instars and adults was the highest in 

combined treatments. Furthermore, egg hatching, pupation and adult emergence of this pest 

were considerably reduced in the combined applications. For more examples, see Table (2). 

   In contrast, Alumai and Grewal (2004) recorded a remarkable reduction of the H. 

bacteriophora viability in the last instar larvae of G.mellonella after treatment with 

thiamethoxam. Also, imidacloprid reduced the viability and infectivity of S. carpocapsae 

(Negrisoli Jr et al., 2008). El-Ashry and Ramadan (2021) studied the combined efficacy of 

EPNs, H. Bacteriophora (Ar-4) and S. feltiae (Filipjev) with imidacloprid against P. 

bispinosus. They observed no synergistic interaction in the combinations. However, the final 

interaction mainly depends on the chemical pesticide selectivity and toxicity to target insects 

(stage and instar). For more examples, see Table (2). 

 

Table 2. Compatibility of EPNs with some neonicotinoid insecticides in combined 

applications. 
EPN Insecticide Insect Result Reference(s) 

H. bacteriophora and 

S. feltiae 

Imidacloprid Planococcus ficus No negatively affected 

survival and infectivity 

of EPN 

Le Vieux and 

Malan (2015) 

H. sonorensis Imidacloprid Helicoverpa zeae Antagonistic to the 

virulence 

Navarro et al. 

(2014) 

H. sonorensis Dinotefuran H. zeae Additive interaction Navarro et al. 

(2014) 

S. carpocapsae and 

H. bacteriophora 

Imidacloprid Agrotis ipsilon Induced EPNs efficacy Mahmoud et al. 

(2016) 

H. megidis, S. feltae 

and S. glaseri 

Thiomethoxam Popillia japonica Compatibility Koppenhofer et 

al. (2003) 

S. carpocapsae Thiomethoxam Galleria mellonella Compatibility Alumai and 

Grewal (2004) 

H. bacteriophora Imidacloprid Holotrichi aoblita Synergistic or additive 

interaction 

Viteri et al. 

(2018) 

Heterrhabditis spp. 

and S. glaseri 

Imidacloprid P. japonica Synergistic interaction Koppenhofer et 

al. (2000) 

H. bacteriophora and 

H. zealandica 

Imidacloprid Agrotis orientalis 

and Cyclocephala 

borealis 

Compatibility Koppenhofer 

and Fuzy, 

(2008) 

H. amazonensis 

JPM4 

Thiamethoxam Tuta absoluta Compatibility Sabino et al. 

(2019) 

H.  bacteriophora 

HB and S.  brazilense 

IBCB-n06 

Thiamethoxam Ceratitis capitata Adversely affected 

viability and infectivity 

Jean-Baptiste et 

al. (2021) 

H.  bacteriophora 

HB and S.  brazilense 

IBCB-n06 

Acetamiprid Ceratitis capitata Compatibility Jean-Baptiste et 

al. (2021) 

H. amazonensis Imidacloprid or 

Thiamethoxam 

Dysmicoccus 

brevipes 

Reduced viability Zart et al. (2021) 

 

2.4. EPN Compatibility with Insecticides of Class Carbamates: 

               The carbamate insecticide oxamyl was found to synergistically improve the 

pathogenicity of S. carpocapsae against A. segetum, but only in a fumigated soil, probably 

by enhancing the EPN nictation behavior (Ishibashi, 1993). According to Alumai and 

Grewal (2004), carbaryl had no inhibitory effect on the viability of H. bacteriophora. Also, 

it did not adversely affect S. carpocapsae viability and pathogenicity when compared to the 

control, with over 96% EPN viability at all concentrations. 

             On the other hand, Rovesti et al. (1988) reported that the EPN combination with 

carbamate insecticides caused toxicity to Steinernema spp. and Heterorhabditis spp. The 
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results of NermuťandMráček (2010) showed that EPNs S. feltiae, S. arenarium and S. 

kraussei were very resistant to some pesticides. The most toxic pesticides were Vydate® 

(oxamyl–carbamate) and Sulka® (sulphur). However, the Previcur® (propamocarb), for 

example, was not very toxic for steinernematids. This agreed with Gordon et al. (1996) who 

reported that not all carbamates are highly toxic to EPNs. Also, the latter researchers tested 

the toxicity of carbofuran against S. carpocapsae and S. feltiae and observed the death of IJs 

of both EPN species. 

               In addition, a reduction in the infectivity of S. feltiae and S. carpocapsae was 

recorded after exposure to sublethal concentrations of oxamyl. This may be due to the 

impairment of the IJs ability to locate the host, affecting locomotion and possibly sensory 

perception, and therefore reducing nematode pathogenicity (Patel and Wright, 1996). Also, 

the lowest infectivity of EPNs S. feltiae, S. arenarium and S. kraussei was observed in 

treatments with the oxamyl (Nermuť and Mráček, 2010). Some years later, the effect of 

oxamylon viability and infectivity of IJs of H. bacteriophora (HP88 strain) and S. 

carpocapsae (All strains) was assessed by El-Ashry and El-Marzoky (2018) against 6th instar 

larvae of G. mellonella. One day after treatment, the tested pesticide reduced the viability of 

IJs in different percentages depending on the EPN species. Moreover, IJs mortality was 

seriously increased with oxamyl, at the recommended doses, after two days.  

2.5. EPN Compatibility with Insecticides of Class Pyrethroids: 

             Many authors (Koppenhöfer et al., 2002; Koppenhöfer and Fuzy, 2008; Sabino et 

al., 2014; El-Ashry and Ramadan, 2021) reported that several pyrethroids were considered 

non-toxic to EPNs. Although Head et al. (2000) reported that pyrethroids have strong 

influences on the infectivity of some EPNs but not viability, NermuťandMráček (2010) 

described the very low influence of pyrethroids on both mortality and infectivity of S. feltiae, 

S. arenarium and S. kraussei. Specifically, deltamethrin did not reduce the survival of EPN 

species (Monteiro et al., 2014; Can Ulu et al., 2016). Moreover, the S. carpocapsae 

combination with cypermethrin had high efficiency against S. frugiperda (Negrisoli et al., 

2010). Similarly, some commercial formulations of cypermethrin were reported to be 

harmless to the survival or infectivity of EPNs (Yan et al., 2012). Also, some pyrethroids, 

such as deltamethrin, lambda-cyhalothrin, cypermethrin, and permethrin, were found 

compatible with H. indica, S.carpocapsae and S. glaseri, under laboratory conditions 

(Negrisoli et al., 2010).  

              Some years later, Kesava et al. (2015) evaluated the compatibility of indigenous 

EPN S. abbasi (CISH EPN-1) with lambda-cyhalothrin 5% EC and bifenthrin 8% SC), at 

field-recommended doses, against G. mellonella under laboratory conditions. Based on their 

results, IJs retained their ability to infect the last instar larvae of G. mellonella after exposure 

to bifenthrin and lambda-cyhalothrin, thus, exhibiting good compatibility and favoringS. 

abbasi as a potential EPN against mango pests. In a study of Sinhouenon et al. (2019) on P. 

xylostella in northern Benin, lambda-cyhalothrin displayed negligible effects on the survival 

of EPNs Steinernema sp. 83a and H. sonorensis KF723827. For controlling the cigarette 

beetle Lasioderma serricorna (Coleoptera: Anobiidae), El-Ashry and Hegab (2021) 

investigated the compatibility of the native H. bacteriophora (Ar-4 strain) and imported H. 

bacteriophora (HP88 strain) with different applications of lambda-cyhalothrin. They 

concluded that the best interaction was obtained with the quarter-recommended application 

(0.25 RC) of lambda-cyhalothrin when combined with EPNs at 100 IJs/larva, which 

displayed a synergistic effect. Under laboratory conditions, El Roby et al. (2023) evaluated 

the activity of two EPNs, H. bacteriophora (HP88) and S. carpocapsae (AT4), as well as 

their compatibility with lambada cyhalothrin and flubendiamide against 4th instar larvae of 

S. frugiperda. Their results indicated that the combination of all insecticides with two EPN 

strains was synergistic against 4th instar larvae.  



Karem Ghoneim and Khalid Hamadah* 

 

116 

                In contrast, S. carpocapsae was reported to be more susceptible to deltamethrin 

compared to H. bacteriophora and H. indica (Negrisoli et al., 2010). Also, the joint action 

of EPNsS.carpocapsae (All strain), S. feltiae (Filipjev), H. bacteriophora (HP88), and H. 

bacteriophora (Ar-4) and lambda-cyhalothrin were evaluated by Aioub et al. (2021) against 

4th instar larvae of the cabbage white butterfly Pieris rapae (Lepidoptera: Pieridae) under 

laboratory conditions. Their results demonstrated the interaction of S. feltiae (Filipjev) with 

the tested insecticide at LC.sub.50 exhibited an antagonistic effect on the mortality of 4th 

instar P. rapae larvae after 3 days of treatment. 

2.6. EPN Compatibility with The Oxadiazine Pesticides: 

                Recent studies have shown that EPNs were compatible with many oxadiazine 

pesticides and their combinations resulted in more efficient control of several insect pests. 

For example, the EPN S. carpocapsae was not effective against T. absoluta larvae but 

treatment of S. carpocapsae in combination with insecticide indoxacarb, S. carpocapsae 

could adversely affect the targeted insect (Al-kazafy et al., 2016). According to Khan et al. 

(2021), indoxacarb caused high mortalities (90–92%) of the tobacco cutworm Spodoptera 

litura (Lepidoptera: Noctuidae) larvae after 72 h when applied in combination with H. 

indica. Depending on their results, also, a combination of indoxacarb with S. carpocapsae 

caused 90% mortality of S. litura larvae. On the other hand, indoxacarb caused less than 

10% mortalities in both EPNs after 72 h of exposure. Based on the results of Aioub et al. 

(2021), the interaction between indoxacarb (at LC.sub.50) and EPNsS.carpocapsae (All 

strain), S. feltiae (Filipjev), H. bacteriophora (HP88), and H. bacteriophora (Ar-4), showed 

additive effects on 4th instar P. rapae larvae. Indoxacarb (at LC.sub.25) with H. bacteriophora 

(Ar-4) showed a potentiating effect. On the other hand, the interaction of S. feltiae with the 

tested insecticide at LC.sub.50 exhibited an antagonistic effect on the mortality of the insect 

larvae after 3 days of treatment. 

2.7. EPN Compatibility with Insecticides of Class Ryanoids/Diamides: 

                As shown in the available literature, some commercial formulations of 

chlorantraniliprole were reported to cause no harm to the survival or/and infectivity of EPNs 

(Yan et al., 2012). For example, combinations of H. bacteriophora with chlorantraniliprole 

demonstrated synergistic or additive interactions against 2nd instar larvae of the white grub 

Holotrichia oblita (Coleoptera: Scarabaeidae) and caused faster larval mortality than the 

EPN or insecticide alone (Guo et al., 2016). The combined application of S. carpocapsae 

and H. bacteriophora with chlorantaniliprole (Coragen) (at LC25) led to high mortality of S. 

littoralis (Hassan and Ibrahim, 2019). In Egypt, El-Ashry et al. (2020) evaluated the 

possibility of mixing flubendiamide (Takumi 20% WG)} with five EPNs for the control of 

H. armigera. Depending on their results, an additive effect was observed in flubendiamide 

combinations with S. glaseri, S. carpocapsae,or H. bacteriophora (HP 88). In Turkey, 

Özdemir et al. (2021) evaluated the combined usage of S.feltiae KV6 Turkish isolate with 

chlorantraniliprole to control the Colorado potato beetle Leptinotarsa decemlineata 

(Coleoptera: Chrysomelidae) larvae. According to their results, the tested insecticide showed 

no adverse effect on the survival and infectivity of the EPN isolate. In the year, 

Fubendiamide caused high mortalities (90–92%) of S. litura larvae after 72 h when applied 

in combination with H. indica (Khan et al., 2021). 

                On the contrary, some studies revealed the incompatibility of some EPNs with a 

number of insecticides belonging to this class. For example, a combination of S. carpocapsae 

with chlorantraniliprole has been suggested as the least toxic control strategy against S. 

frugiperda (Viteri et al., 2018). In a study to control the coffee berry borer Hypothenemus 

hampei (Coleoptera: Curculionidae) by EPNs, cyantraniliprole formulation seriously 

affected the viability of IJs of S. feltiae and Heterorhabditis spp. (IBCB-n 46), mainly after 

48 h of exposure (Guide et al., 2018). Also, El-Ashry et al. (2020) recorded an antagonism 
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interaction between all flubendiamide combinations and S. feltiae or H. bacteriophora (Ba-

1) against the H. armigera larvae. 

2.8. EPN Compatibility with Insecticides of Other Classes:  

                With regard to phenylpyrazoles, Al-kazafyet al. (2016) found S. carpocapsae not 

effective alone against T. absoluta larvae but it was virulent in combination with the 

chemical insecticide fipronil. Fipronil had been reported as compatible with H. 

Bacteriophora Poinar and S. carpocapsae Weiser since they are highly resistant to fipronil 

but S. arenarium (Artyukhovsky) showed a mortality rate of 94.6 % after 24 h exposure (del 

Pino and Jové, 2006). Some commercial formulations of fipronil were reported to cause no 

harm to the survival and infectivity of different EPNs (Yan et al., 2012). 

                 The available literature contains, also, diverse results of studies focusing on the 

compatibility of EPNs with insecticides of classes other than those mentioned in the previous 

sections. For instance, Cartap hydrochloride (an insecticide of the Nereistoxin analogue 

group) had been found to be highly toxic to EPNs S. carpocapsae (Zhang et al., 1994), H. 

indica and Metarhabditisamsactae (Prasad et al., 2016). Also, Chavan et al. (2018) 

evaluated the compatibility of EPN H. indica with different insecticides under laboratory 

conditions. Their results showed that H. indicais compatible with all insecticides except 

cartap hydrochloride. Sabino et al. (2019) investigated the compatibility of EPN H. 

amazonensis JPM4 with the registered insecticide Premio® for the control of T. absolutain 

the tomato crop. Depending on their results, EPN was compatible with the tested insecticide 

and increased larval mortality. Later on, Özdemir et al. (2021) evaluated the combined usage 

of PBO (Piperonyl butoxide), DEM (Diethyl maleate) and DEF (S, S, S-

tributylphorotrithioate) with S. feltiaefor control L. decemlineata. These insecticides showed 

no adverse effect on the survival and infectivity of S. feltiae and the EPN isolate was 

considered compatible with integrated L. decemlineata control. This study also showed that 

pre-treatment with synergistic chemicals (particularly PBO and DEM) increased the efficacy 

of S. feltiae against L. decemlineata.  

2.9. EPN Compatibility with Some Herbicides:  

                 The majority of studies investigating the influence of herbicides on EPNs 

indicated that they have no drastic effects on different EPNs (Gibb and Buhler, 1998; Fujiie 

et al., 1993). For instance, the herbicide glyphosate was reported to be compatible with H. 

bacteriophora (Rovesti et al., 1988), S. carpocapsae and S. feltae (Rovesti and Deseö, 1990). 

De Nardo and Grewal (2003) assessed the compatibility of S. feltiae Filipjev with the 

herbicide clethodim (Envoy). They determined compatibility with no loss in viability and 

infectivity of EPN up to 24 h of exposure. Also, they found the viability of S. feltiae was 

more than 80% even after 72 h of exposure. Some years later, Laznic and Trdan (2017) 

reported no detrimental effect of the herbicide 2,4-D Sodium on the viability of S. feltae. 

Also, Chavan et al. (2018) evaluated the compatibility of EPN H. indica with some 

herbicides under laboratory conditions. Their results showed that H. indica is compatible 

with the majority of these herbicides. Sabino et al. (2019) investigated the compatibility of 

EPNH.amazonensis JPM4 with the registered herbicide Warrant® for the control of T. 

absoluta in the tomato crop. Depending on their results, EPN was compatible with the tested 

herbicide and increased larval mortality. 

                On the other hand, Gupta and Siddiqi (1999) reported that the herbicide 2,4-D 

Sodium was not compatible with S. carpocapsae. Trifluralin (Treflan 48 EC®) has caused 

high mortality of EPNs S. feltiae, S. arenarium and S. kraussei, although this may be the 

result of the strong organic solvent and methanol contained in this herbicide (Nermuť and 

Mráček, 2010). Under laboratory conditions, Chavan et al. (2018) found incompatibility of 

EPN H. indica with pendimethalin. Then, Zart et al. (2021) evaluated the performance of 

nine isolates of H. amazonensis and one of H. indica on the mealy bug Dysmicoccus brevipes 



Karem Ghoneim and Khalid Hamadah* 

 

118 

(Hemiptera: Pseudococcidae). In the compatibility test, isolate NEPET11 (H. amazonensis) 

exhibited reduced viability due to the herbicide Poquer (Clethodim). 

2.10. EPN Compatibility with Some Fungicides:  

               Many investigators have assessed the compatibility of some EPN species with a 

number of fungicides. In a study of the compatibility of H. bacteriophora HP88 and S. 

carpocapsae All strains with selected insecticidal compounds against the last instar larvae 

of G. mellonella, the fungicide mefenoxam had no significant effect on the viability of EPNs, 

with over 96% EPN viability in all concentrations (Alumai and Grewal, 2004). Also, Radova 

(2010) determined the survival and infectivity of IJs of S. feltiae after being exposed to some 

fungicides, viz., Candit (kresoxim-methyl), Captan, Teldor (Fenhexamid), and Tridal 

(Nuarimol), under laboratory conditions. They found the EPN tolerant to all tested 

fungicides, mortality during 72 h varied from 7.04% to 8.86%. The EPN reproduction was 

not influenced by the tested fungicides. Also, these fungicides had slight effects on S. feltiae 

virulence after 3 days. These results suggested that S. feltiae can be applied in combination 

with all tested fungicides.  

              On the contrary, De Nardo and Grewal (2003) recorded significantly reduced 

viability of S. feltiaeby exposure to Terrazole® (10%) within 24 h compared to the controls. 

Also, the pathogenicity of S. carpocapsae and H. bacteriophora was significantly reduced 

by aluminum tris (a fungicide, Fosetyl-Al)(Alumai and Grewal, 2004). The fungicide 

mankozeb (Novozir MN 80®) caused higher mortality and lower infectivity of EPNs S. 

feltiae, S. arenarium and S. kraussei (Nermuť and Mráček, 2010). The compatibility of H. 

indica with different fungicides was evaluated under laboratory conditions by Chavan et al. 

(2018).  Their results showed that the EPN was compatible with all compounds except the 

fungicides tricyclazole and carbendazium+mancozeb. 

2.11. EPN Tolerance To Some Nematicidal Compounds: 

                It is well known that the nematicidal compounds have been used to control the 

plant-parasitic nematodes. In addition, some investigators have studied their effects on some 

EPNs. For instance, El-Ashry et al. (2020) studied the possibility of mixing fenamiphos 

(Dento40% EC) with five EPNs. They reported that the tested compound with IJs of EPNs 

showed an additive or antagonistic reaction with no evidence of synergistic action. One year 

later, Touray et al. (2021) investigated the effects of four registered nematicidal compounds 

(fluopyram, fosthiazate, metam potassium and fenamiphos) on the survival, virulence, 

penetration efficiency and reproduction of S. carpocapsae and H. bacteriophora. EPN 

survival suffered ≥ 80% mortality by fosthiazate, fenamiphos and metam potassium within 

24 h. 

2.12 Some Insights Into Effective EPN-Insecticide Combinations For Highly Efficient 

Pest Control: 

Scavenging BehaviorAnd Fitness of EPNs in Relation To Insecticides:  

                As reported by Blanco-Pérez et al. (2019), EPNs can play a dual role in the 

environment as pathogens and as scavengers; both roles may contribute to the EPN 

population level in the environment. It has been evidently demonstrated that EPNs of the 

family Steinernematidae preferentially scavenged on recently dead insects (cadavers) that 

were yet to be colonized by other competitors (San-Blas and Gowen, 2008). In such hosts, 

these EPNs do not need to overcome the insect immune system or defense strategies. On the 

other hand, EPNs of the family Heterorhabditidae were less disposed to such behavior than 

steinernematids. This scavenging behavior could serve as a method to maintain the natural 

EPN populations as often times insects are partially eaten by natural enemies, or killed by 

pesticides (San-Blas and Gowen, 2008; Blanco-Pérez et al., 2019). Moreover, EPNs can 

penetrate and develop in both dead and live insects exposed to chemical insecticides. On the 

other hand, it is not exactly known that the chemicals that persist in the tissues of insects 
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killed by insecticides may be toxic to the developing IJs of EPNs and their symbiotic bacteria 

(Puza and Mracek, 2010). Afterward, Nalinci et al. (2021) hypothesized that chemical 

insecticides have negative impacts on scavenging EPNs. In their study, they concluded that 

the fitness of scavenging IJs is not reduced by insecticides in insect cadavers. Furthermore, 

exposure to insecticides may promote the virulence of EPNs in some cases (Nalinci et al., 

2021). 

Serious Challenges of Successful EPN-Insecticide Combinations: 

                 In this context, also, some challenges should also be taken into account since 

many insecticides did not interact with some EPN species while other insecticides enhanced 

the EPN efficacy (synergistic interaction)(Koppenhöfer and Kaya, 1998; Mannion et al., 

2000; Kary et al., 2018). Also, some studies indicated the detrimental impacts of some 

insecticides on the EPN efficiency, in terms of infectivity and survival, against several insect 

pests (antagonistic interaction) (Gordon et al., 1996; Krishnayya and Grewal, 2002). For 

instance, different interactions have been reported for chemical insecticides with S. 

carpocapsae and H. indica after 48 h of exposure. By increasing exposure time to 96 h, the 

interactions of EPNs and insecticides turned antagonistic and can reduce the EPN viability 

and infectivity (Head et al., 2000; Krishnayya and Grewal, 2002; Negrisoli et al., 2010). 

Moreover, other studies have shown that delayed exposure to certain insecticides at higher 

concentrations can cause variable toxicity against EPNs S. carpocapsae and H. indica (Khan 

et al., 2018). The long combination periods between EPNs and chemical insecticides will 

show different types of toxicological interactions (Koppenhofer et al., 2000). Therefore, 

some authors (Kwizera and Susurluk, 2017; Mohankumar et al., 2017) have paid attention 

to the combination period of EPNs with insecticides, sincesome insecticides exhibited high 

compatibility with EPNs less than 96 h of treatment but long combining time will show toxic 

effect leading to increasing mortality of both EPN and insect host.  

               A great effort has been exerted in the world to handle the aforementioned 

challenges, since the extent to which EPNs interaction with chemical pesticides depends on 

a number of factors, including EPN species, rates and timing of application, developmental 

stage of the targeted pest, exposure method and the environmental complexity in which the 

interaction takes place (Kary et al., 2021). Furthermore, the life stage and instar of the 

targeted insect interfere with the compatibility of EPN with insecticides because the early 

larval instars of white grubs, for instance, are more susceptible to EPNs (Koppenhofer and 

Fuzy, 2008; Malinowski, 2011; Patil et al., 2017; Kary et al., 2018). Furthermore, the EPNs 

survival and efficacy were also affected by host traits, e.g. host species, host developmental 

stage, host’s immune system, and molecules emitted by the host, so, changing EPN 

pathogenicity in the presence of chemical insecticides may be due to poor viability or 

mortality of IJs (Labaude and Griffin, 2018). 

                 In addition, the EPN species differ in their susceptibility and sensitivity to 

different formulations of the same chemicalpesticide (Grewal, 2002). The actual 

concentration of the chemical to which the EPNs will be exposed will vary depending on the 

application volume and system used (Alumai and Grewal, 2004). The incompatibility of 

EPNs with certain insecticides may be attributed to the toxicity of the pesticide ingredient, 

consequently reducing their ability to infect the target host. It is also possible that the 

pesticide formulations could have detrimental toxic effects on the endosymbiotic bacteria 

associated with these EPNs as well, subsequently decreasing EPN infectivity (Alumai and 

Grewal, 2004). 

               As previously mentioned, some chemicals, used as inert ingredients or adjuvants 

in formulations, can be toxic to EPNs, hence compatibility of each formulation with the 

specific EPN species should be evaluated thoroughly (Krishnayya and Grewal, 2002; 

Radova, 2010). In other words, the compatibility of different chemicals and EPN 
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strains/isolates should be extensively assessed to achieve good pest control (Devi, 2022). 

Another point of concern is the compatibility of EPNs with several insecticide scans 

achieved usually at lower doses and short-term exposures, they can be tank-mixed for 

application together in the field against targeted insect pests (Priya and Subramanian, 2008; 

Laznik and Trdan, 2014). Prior to use, compatibility and potential for tank-mixing should be 

based on manufacturer recommendations (Vashisth et al., 2013). 

                In summary, compatibility of EPNs with synthetic insecticides may help to 

preserve and maintain EPNs in the environment and favor biological pest control, i.e., EPNs 

may be utilized in synergy, when combined with insecticides that increase their control 

efficiency (Negrisoli Jr. et al., 2008, Leite et al., 2012, Tavares et al., 2012, Bajc et al., 

2017). Also, EPN combined with certain doses of registered insecticide are easy to apply in 

the field, as they are easily sprayed using standard equipment including pressurized, mist, 

fan, electrostatic and aerial sprayers (Radova, 2010; Viteri et al., 2018).  

               In the same regard, some special attention should be paid to the sensitivity of 

certain insecticides or certain formulations of an insecticide to avoid a decrease in the EPN 

vitality and infectivity (Grewal et al., 1998; Head et al., 2000; Krishnayya and Grewal, 

2002). Furthermore, some EPN species have varied susceptibility to different chemical 

pesticide formulations. This could be related to changes in the epidermal structure of IJs of 

different EPN species (Grewal, 2002).  Moreover, some chemicals, used as inert ingredients 

or adjuvants in formulations, can be toxic to EPNs, hence compatibility of each formulation 

with the specific EPN species should be extensively evaluated (Krishnayya and Grewal, 

2002). Because the EPN-pesticide compatibility can be strain-specific (Laznik et al., 2012), 

the species, strain, or isolate of EPN appear to be of great importance in determining its level 

of susceptibility to systemic insecticides (Koppenhöfer and Grewal, 2005; Laznik et al., 

2012; Atwa et al., 2013). It is still necessary to test the compatibility of the commonly used 

pesticides in the area where EPN strains are anticipated to be used (Baimey et al., 2015; 

Sinhouenon et al., 2019). 

3. Interaction of EPNs with Insect Growth Regulators - Competitive Or 

Complementary? 

3.1. Insect Growth Regulators – A Synopsis: 

                 Insect growth regulators (IGRs), or insect growth disruptors, have been used for 

insect pest control as an effective alternative to synthetic insecticides which usually lead to 

several drastic problems, such as environmental hazards, destruction of natural enemies, 

serious toxicological problems to humans and development of the insect resistance toward 

different insecticides (Rose, 2001; Davies et al., 2007; Costa et al., 2008; Mosallanejad and 

Smagghe, 2009; Yarahmadi et al., 2009; Sharifian et al., 2012). This term implies that IGRs 

are selective and specific to the target pests (Ishaaya et al., 2005; Horowitz et al., 2009; 

Sarwar, 2015), do not accumulate in the environment, are less toxic to man and domestic 

animals, less toxic to natural enemies and non-target organisms, and less persistent in the 

ecosystems (Mondal and Parween, 2000; Raslan, 2002; Taleh et al., 2015).  

               Therefore, IGRs can be used in the development of sustainable agriculture (Zhou 

et al., 2003; Wang and Wang, 2007; Sabry and Abdu, 2016). Also, there are many reports 

on the use of IGRs against insect vectors of human and animal diseases (Ijumbaet al., 2010; 

Belinato et al., 2013).  Based on the specific mode of action, IGRs have been categorized 

into three categories: (i) juvenile hormone analogues, JHAs, also called Juvenoids), (ii) 

Ecdysteroid agonists and (iii) Chitin synthesis inhibitors (CSIs) or moult inhibitors 

(Oberlander and Silhacek, 2000). They had been, also, grouped into CSIs and substances 

that interfere with the action of insect hormones (i.e. JHAs, and ecdysteroids)(Tunaz and 

Uygun, 2004).  
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Juvenoids or JHAs:  

                They can be further classified into two groups: the terpenoid JHAs such as 

methoprene, hydroprene and kinoprene and the phenoxy JHAs such as fenoxycarb and 

pyriproxyfen (Dhadialla et al., 2005). Interestingly, several thousand synthetic compounds 

with JH-like effects have been described (Henrick, 2007; Ramaseshadri et al., 2012), many 

of which are structurally distinct from the native hormone (Jindra and Bittova, 2020). 

Starting from the mid‐1970s, some of these "Juvenoids" have found commercial use, among 

the new class of insecticides, IGRs, or insect growth disruptors (Minakuchi and Riddiford, 

2006; Pener and Dhadialla, 2012). Since JH does not occur in vertebrates, the juvenoid IGRs 

are considered safe for humans (Jindra and Bittova, 2020). According to the current 

literature, many Juvenoids have been reported as potential control agents against different 

insect pests via disruption of their survival, growth, development, reproduction and 

embryogenesis (Oberlander et al., 1997; Segura et al., 2009; Abdelhamid et al., 2019). 

Ecdysteroids or Ecdysone Agonists: 

                Like other IGRs, ecdysone agonists act more slowly than neurotoxic insecticides 

because they disrupt the hormonal system or the physiological development of insects rather 

than directly killing these insects (Biddinger et al., 2006). Several substituted 

dibenzoylhydrazines that act as non-steroidal ecdysteroid agonists have been synthesized, 

such as the prototype compound RH-5849 (1,2-dibenzoyl-1-tert-butylhydrazine), 

Tebufenoside (RH-5992), Methoxyfenozide (RH-2485) and Halofenozide (RH-0345) and 

Chromafenozide (ANS-118), and used for controlling lepidopterous and coleopterous pests 

(Ishaaya, 2001; Palli and Retnakaran, 2001; Yanagi et al., 2006). These compounds are 

harmless to vertebrates (Carlson et al., 2001) with little or no adverse effects on beneficial 

insects (Retnakaran et al., 2003). Ecdysone agonists have a narrow spectrum of activity, a 

positive ecotoxicological profile, and short persistence in the environment (Sundaram et 

al.,2002, Osorio et al., 2008). These advantages make these compounds promising against 

many economically important agriculture and forest pests (Smagghe et al., 2003, Biddinger 

et al., 2006; Dhadialla and Ross, 2007; Pineda et al., 2009). 

Chitin Synthesis Inhibitors: 

               Chitin synthesis inhibitors (CSIs), such as the Benzoylphenyl Urea compounds 

(BPUs), are compounds that inhibit the chitin biosynthesis in the larval stage of the insect, 

leading to abnormal endocuticular deposition and abortive molting, thus preventing molting, 

or produce an imperfect cuticle resulting in death (Mondal and Parween, 2000; Dhadialla et 

al., 2005; Yu, 2008; Merzendorfer, 2013). CSIs have received great attention in insect pest 

control strategies because of their unique action in interfering with chitin synthesis (Belinato 

et al., 2013). They are less toxic compounds to the non-target organisms and beneficial biota 

(Cutler and Scott-Dupree, 2007), exhibit very low mammalian toxicity (Barazani, 2001; 

Ishaaya and Horowitz, 2002), and have no residual effects (Talikoti et al., 2012). 

               After the discovery of Diflubenzuron (Dimilin), an array of new analogues 

(dimiloids) was synthesized by different agrochemical companies. These compounds 

include Chlorfluazuron (Atabron), Flufenoxuron (Cascade), Hexaflumuron (Consult), 

Lufenuron (Match), Teflubenzuron (Nomolt) and Triflumuron (Alsystin), etc. (Tomlin, 

2000; Kim et al., 2000). In the few past decades, some new BPU analogues were developed, 

such as: Novaluron, Bistrifluron, Flucycloxuron, Hexaflumuron, Fluazuron, Buprofezin, 

CyromazineandNoviflumuron (Sheets et al., 2000; Karr et al., 2004; Sun et al. 2015). 

According to the aforementioned categorization of these compounds, the available studies 

concerning the combination of EPNs with IGRs can be reviewed below. 

3.2. Compatibility of EPNs with JHAs: 

                Limited knowledge exists in the current literature on the assessment of 

compatibility of EPNs with JHAs. The compatibility of the EPN S. feltiae Filipjev with 
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fenoxycarb (Precision 25WP) was studied by De Nardo and Grewal (2003). They recorded 

a compatibility with no loss in viability and infectivity of the EPN up to 24 h of exposure. 

Moreover, viability was more than 80% even after 72 h of exposure. Some years later, 

Radova (2010) determined the survival and infectivity of S. feltiae IJs after exposure to 

Admiral (pyriproxyfen) and Enstar (kinoprene), under laboratory conditions. Their results 

indicated that S. feltiae was tolerant to the tested IGRs, and low mortality during 72 hs varied 

from 2.26% to 18.68%. Also, EPN reproduction was not influenced by these IGRs. These 

results suggested that S. feltiae can be applied in combination with the tested JHAs.  

                On the contrary, certain EPN species were incompatible with some JHAs, as 

reported by a number of studies.  Gordon et al. (1996) tested the toxicity of fenoxycarb 

against the EPNs S. carpocapsae and S. feltiae and reported that this JHA caused the death 

of IJs of both EPN species. More than two decades later, Zart et al. (2021) evaluated the 

performance of nine isolates of H. amazonensis and one of H. indica on the mealybug 

Dysmicoccusbrevipes (Hemiptera: Pseudococcidae). In their compatibility test, the isolate 

NEPET11 (H. amazonensis) exhibited reduced viability due to the combination with Tiguer 

100 EC (pyriproxyfen). 

3.3. Compatibility of EPNs with Ecdysteroid Compounds: 

                Depending on the currently available literature, very few studies have examined 

the compatibility of EPNs with ecdysteroids or ecdysone agonists. Mannion et al. (2000) 

conducted laboratory bioassays to investigate the potential interaction between EPN H. 

marelatus IN strain and the ecdysteroid halofenozide against 3rd instar larvae of Japanese 

beetle Popillia japonica (Coleoptera: Scarabaeidae). According to their results, no 

synergism was detected in the combined treatments but no significant differences in EPN 

reproduction in larvae exposed to halofenozide and EPNs versus larvae exposed to only 

EPN. Later on, Alumai and Grewal (2004) evaluated the compatibility of H. bacteriophora 

HP88 and S. carpocapsae All strains with halofenozide in tank-mixes under laboratory 

conditions after culturing IJs in the last instar larvae of the greater wax moth Galleria 

mellonella (Lepidoptera: Pyralidae). This IGR significantly reduced the pathogenicity of H. 

bacteriophora only but had no significant effect on its viability. This IGR did not have a 

remarkable effect on S. carpocapsae viability. 

                 Some years later, Radova (2010) determined the survival and infectivity of S. 

feltiae IJs after being exposed to some IGRs, viz., Mimic (tebufenozide) and Runner 

(methoxyfenozide), under laboratory conditions. This EPN was tolerant to these 

ecdysteroids, and mortality during 72 h varied from 2.26% to 18.68 %. According to the 

results of the same study, EPN reproduction was not affected by these IGRs. In conclusion, 

results revealed a tolerance of S. feltiae to the tested compounds. The Methoxyfenozide was 

found harmless to two H. indica and S. carpocapsae even 96 h after treatment of S. litura 

larvae while the lowest larval mortality (44.00±3.74%) of the targeted insect was observed 

for a mixture of H. indica with Methoxyfenozide (Khan et al., 2021). 

3.4. Compatibility of EPNs with CSIs: 

                 In comparison with the previously mentioned IGR categories, the current 

literature contains results of many studies regarding the compatibility bioassays of EPNs 

with CSIs. For example, diflubenzuron was reported with no adverse effect on the survival 

and reproduction of S. carpocapsae (Hara and Kaya, 1982) and the viability of EPN H. 

bacteriophora (Rovesti et al., 1988). De Nardo and Grewal (2003) assessed the compatibility 

of S. feltiae Filipjev with diflubenzuron (Adept® IGR) and recorded compatibility of EPN 

with no loss in its viability and infectivity up to 24 h of exposure. Several years later, Sabino 

et al. (2014) studied the compatibility of S. carpocapsae All and H. amazonensis JPM4 with 

different compounds, including Certero® (triflumuron), against G. mellonella larvae. 

Depending on their results, triflumuron was found among the least toxic compounds on these 
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EPNs. The two EPN species were presented in sensitivity to this CSI. This result was in 

agreement with the results reported by Rovesti and Deseo (1990) on S. carpocapsae and S. 

feltiae. 

              Under laboratory conditions, Radova (2010) determined the survival and infectivity 

of IJs of S. feltiae after exposure to Match (lufenuron). They found S. feltiae tolerant to this 

CSI and its reproduction was not influenced. These results suggested that S. feltiae can be 

safely applied in combination with lufenuron. In another study, Negrisoli et al. (2010) found 

H. indica, S. carpocapsae and S. glaseri compatible with the CSIs lufenuron, diflubenzuron 

and triflumuron against S. frugiperda under laboratory conditions. Results of the same study 

revealed that S. carpocapsae in combination with Match™ lufenuron (0.150 L/ha) caused 

90.0% larval mortality. Also, the interaction of lufenuron with S. glaseri was synergistic but 

dependedon the formulation and the tested concentration. According to the results of 

Negrisoli et al. (2010), EPNs, H. indica, S. carpocapsae and S. glaseri were compatible with 

CSIs Dimilin™ (diflubenzuron) and Certero™ (triflumuron), under laboratory conditions. 

                A decade later, Paunikar and Kulkarni (2020) evaluated the compatibility of IJs of 

S. dharanaii (TFRIEPN-15) with Cigna® (lufenuron) and recorded no detrimental effect on 

the survival, infectivity and progeny production of the EPN. Another CSI, Novaluron, was 

found harmless against H. indica and S.carpocapsae even 96 h after treatment of S. litura 

larvae (Khan et al., 2021). As recorded by Jean-Baptiste et al. (2021), H. bacteriophora HB 

and S. brazilense (IBCB- n06) were compatible with Novaluron for the control of the fruit 

fly Ceratitis capitata (Diptera: Tephritidae), with the highest mortality of the targeted fly 

occurring in a combination of either EPN with the tested compound, followed by EPN or 

CSI alone. 

                 In Egypt, Hassan and Ibrahim (2019) evaluated the combined effects of CSIs viz., 

Nomolt (teflubenzuron); Ekio (novaluron) and Magic Smart (lufenuron) with EPNs S. 

carpocapsae and H. bacteriophora againstS.littoralis. All tested IGRs caused low mortalities 

of EPNs. The combined efficacy of S. carpocapsae or H. bacteriophora with each of these 

IGRs, at LC25, was effective for causing high mortality of S. littoralis. In Egypt, also, the 

compatibility of Egyptian strains of EPNs (H. bacteriophora (HP88) and S. carpocapsae 

(AT4) with lufenuron and its activity against the 4th instar larvae of S. frugiperda had been 

studied by El Roby et al. (2023). According to their results, all mixtures of lufenuron with 

EPNs have synergistic effects against 4th instar larvae except at the concentration LC25 was 

antagonist.  

                 In contrast to the aforementioned results, results of some studies revealed an 

incompatibility of some EPN species with certain CSIs, such as cyromazine which did not 

exhibit synergistic interaction with H. bacteriophora Poinar "GPS1" for control of onion 

maggot Delia antique (Diptera: Anthomyiidae) (Yildrimand Hoy, 2003). Also, Zart et al. 

(2021) evaluated the performance of nine isolates of H. amazonensis and one of H. indica in 

mixtures with certain compounds against the mealybug Dysmicoccus brevipes (Hemiptera: 

Pseudococcidae). In the compatibility test, Curyom (lufenuron 550 EC) was the only one 

that reduced the infectivity (92% reduction) of the isolate NEPET11 (H. amazonensis) and, 

thus, it could be classified as a moderately toxic compound. 

4. Interactions between EPNs and Fertilizers: Compatibility Or Incompatibility? 

4.1. Agricultural Management Practices And Soil Amendments In Relation to EPNs - 

an Overview: 

                 First and foremost, the addition of organic and inorganic soil amendments to 

improve soil fertility and plant growth is among the oldest agricultural practices (Kaya, 

1990). Early, Georgis and Gaugler (1991) emphasized the reducing effects of some soil 

amendments on the efficacy of EPNs. In this context, it is important to shed some light on 

the fertilizers and amendments in the agricultural soil, the most suitable habitat in which 
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EPNs spend most of their life and have host-finding behavior. Some authors (Şahin and 

Susurluk, 2018; Bamelet al., 2020) reported that the occurrence, abundance, viability and 

reproduction of EPNs, as well as their virulence against soil-dwelling insect pests, can be 

remarkably affected by several factors including the soil physico-chemical properties. 

According to Kandji et al. (2001), the correlations between soil physico-chemical properties 

and EPNs play an important role in the distribution and biodiversity of EPNs' communities. 

As shown in the current literature, several studies have examined the negative effects of 

intensive soil management on EPN populations (Hummel et al., 2002; Campos-Herrera et 

al., 2008, 2010, 2014). Now, it is well known that different agronomic practices, such as 

irrigation, tillage and fertilization, have affected the abundance and insecticidal activities of 

EPNs (Susurluk, 2008; Hussaini, 2017). Therefore, the potential interaction of EPNs with 

soil amendments, whether synergistic or antagonistic, is a key factor for successful 

biological control using EPNs (Forschler et. al., 1990; Jaffuel et al., 2016). 

                 Selected aspects should be highlighted in this context, since EPN virulence can 

be affected by many biotic and abiotic factors, under field conditions, including the soil 

microbiome (community of microorganisms and the used EPN species), cultivated plant 

genotypes, soil properties (texture, moisture, temperature, pH, organic matter content, etc.), 

and characters of the used fertilizer, such as its physical status, mineralization rate, nutrient 

content, and decomposition products (Zhao et al., 2014; Hussaini, 2017; Sahin and Susurluk, 

2018). For instance, some of the fertilizer decomposition products may be directly toxic to 

EPNs; fertilizer application may induce biotic activity in terms of predation and parasitism 

on EPNs. In a biological process, such as mineralization, its rate may vary with soil moisture, 

temperature and aeration. Some or all of these factors may contribute to reducing EPN 

virulence (Shapiro-Ilan et al., 2006; Campos-Herrera et al., 2019; Bruno et al., 2020). Also, 

the use of fresh manure has been shown to detrimentally affect the survival and virulence of 

EPNs (Lawrence et al., 2006; Selvaraj and Annamalai, 2011). In addition, the soil pH alone 

does have a strong effect on the EPN activity however at pH values above 10, the EPN 

activity declines rapidly (Lacey and Kaya, 2007). In their study, Kawaka et al. (2014) found 

that the soil pH ranged from 3.5 to 4.9 and this is considered favorable for the survival of 

EPNs. 

                  In addition, the application of various pesticides has been reported to exhibit 

direct toxic effects on EPNs (Alumai and Grewal, 2004). Also, herbicides and fungicides are 

poorly tolerated by EPNs and have toxic effects on their survival and virulence 

(Koppenhöfer and Grewal, 2005). For some details, see the previous section "Compatibility 

of EPNs with synthetic insecticides" in the present review. As previously mentioned, EPNs 

are affected by various abiotic soil properties which might be drastically altered by 

agricultural management practices and biotic factors, such as competitors and natural 

enemies (Stuart et al., 2006; Stuart et al., 2015; Lewis et al., 2015). Understanding these 

interactions is essential to reveal suitable measures to promote the potential of EPNs as 

biocontrol agents in a particular soil type (Jaffuel et al., 2016).  

                 Generally, attributes of the used fertilizer (Bednarek and Gaugler,1997; Sahin and 

Susurluk, 2018), EPN species (Susurluk, 2008), and relevant settings (Shapiro et al., 1996; 

Shapiro et al., 1999; Hussaini, 2017) should be taken into consideration when assessing EPN 

efficacy for use in the biological control of insect pests (Rufai et al., 2020). With regard to 

organic and inorganic fertilizers, various studies investigated the effects of these additive 

compounds on the EPNs fitness (Bednarek and Gaugler, 1997; Shapiro et al., 1999; 

Hussaini, 2017). On the other hand, little research has been conducted to determine the 

effects of different fertilizers on the symbiotic bacteria of EPNs (Mullens et al., 1987). 

4.2. Compatibility of EPNs with Organic Fertilizers: 

               To our knowledge, few studies have reported positive effects of organic soil 
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management on the EPNs (Briar et al., 2007; Campos-Herrera et al., 2008, 2010). For 

example, some studies have determined a reduced survival of the EPN S.  carpocapsae after 

mixing with fresh manure (Mullens et al., 1987) but enhanced survival in compost (Ishibashi 

and Kondo, 1986). These results were, to some extent, in agreement with the results of 

Shapiro et al. (1996) who recorded a reduction of the S. carpocapsae virulence against G. 

mellonella by urea and fresh manure in laboratory experiments. In the field experiments, 

however, only the fresh manure treatment reduced the EPN virulence. In both laboratory and 

field experiments, composted manure did not affect the EPN virulence. According to the 

results of the same authors, also, the effect of a fertilizer on S. carpocapsae virulence was 

more rapid in a soil of low content of organic matter than in a soil of rich organic matter.  

                 On the other hand, Bednarek and Gaugler (1997) reported that the organic 

manure, used as fertilizer, may encourage EPNs establishment and recycling. More than two 

decades later, Bamel et al. (2020) determined the direct effects of soluble fertilizers on the 

EPN H. indica. Depending on their results, urea phosphate was found to be the most lethal, 

as compared to other fertilizers. There was a positive correlation between the concentration 

of fertilizer and mortality of IJs of the EPN H. indica. Also, the infectivity of H. indica 

decreased with the increase of incubation period from 1 to 3 and further to 5 days. 

4.3. Compatibility of EPNs with Inorganic Fertilizers: 

                Currently, many investigators have paid attention to investigating the effects of 

inorganic fertilizers on different traits of EPNs. Bednarek and Gaugler (1997) assessed the 

impact of some inorganic and organic fertilizers on the infectivity, reproduction, and 

population dynamics of EPNs. They concluded that inorganic fertilizers were likely to be 

compatible with EPNs in tank mixes and should not reduce the pathogenicity of EPNs used 

for short-term control as biological control agents, but may interfere with attempts to use 

EPNs as inoculative agents for long-term control.  

               For some detail, the effect of calcium phosphate on survival, infectivity and 

penetration efficiency of the Egyptian strains HPS1, HPS2 and HPS3 of Heterorhabditids 

sp. was evaluated by Azazy et al. (2012), in Egypt, against larvae of G. mellonella. 

According to their results, calcium phosphate (at low concentrations of 0.2M and 2M) was 

less suppressive on the survival of the three EPN strains and did not affect their infectivity 

against G. mellonella (100% larval mortality), but medium concentrations affected the EPN 

infectivity. According to their results, also, calcium phosphate at three concentrations 

reduced the penetration efficiency of all EPN strains. Also, the direct effects of some 

inorganic fertilizers had been investigated by Şahin and Susurluk (2018), in Turkey, on the 

EPNs S. feltiae (Tur-S3) and H. bacteriophora (HBH). S. feltiae was more resistant to the 

tested inorganic fertilizers than H. bacteriophora. The diammonium phosphate (DAP), 

nitrogen phosphorus potassium (NPK) and nitrogen and phosphorus (NP) exhibited more 

adverse effects than the other fertilizers on both EPN species. These results agreed with those 

results of Susurluk (2008) who found that prolonged exposure to high concentrations of NPK 

inhibited the activities of Steinernema spp. and Heterohabditis spp.  

                 In recent years, a study by Kolombar et al. (2020) revealed that mineral 

fertilizers(mineral additives) slightly reduced the vitality of IJs of different EPN species, 

while survival and viability of the IJs cultures of the EPNs increased during the use of 

solutions of ascorbic acid, В1, В6 or В12. Thus, these authors recommended the use of these 

vitamin solutions for improving the viability of EPN preparations at the concentrations of 

6–50, 25–50, 25–50 and 0.1–0.2 mg/mL respectively. In Egypt, Shehata et al. (2021) 

examined the effects of different inorganic fertilizers (such as ammonium sulfate, 

ammonium nitrate, calcium nitrate, ammonium phosphate, potassium sulfate, NPK, 

potassium nitrate)on the virulence of indigenous EPNS.glaseri. Based on their results, 

phosphorus fertilizers exhibited stronger reducing effects than others on the EPN virulence. 
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Except for phosphorus fertilizers, 1% fertilizer concentrations are compatible with S. glaseri 

in tank mixes for short-term (1–7 days) insect control but may affect long-term control. 

However, the effects of inorganic fertilizers varied according to their chemical composition, 

the EPN species exposed, and the duration of its exposure to the fertilizer (Guo et al., 2013; 

Sahin and Susurluk, 2018). 

                 With respect to the symbiotic bacteria of EPNs, Downs et al. (2022) investigated 

the effects of various organic and inorganic fertilizers on the density of Xenorhabdus 

nematophila and Photorhabdus luminescens (symbiotically associated with EPNs S. 

carpocapsae and H. bacteriophora, respectively). They concluded that P. luminescens are 

generally more sensitive to fertilizers than X. nematophila. Moreover, those fertilizers 

containing high nitrogen content suppressed the bacterial densities more readily than those 

with lesser content. Also, bacterial symbionts exposed to inorganic (synthetic) fertilizers had 

greater population declines as well as greater mortality rates than those treated with organic 

amendments. 

                  In summary, EPNs are affected by various abiotic soil properties which might be 

drastically altered by agricultural management practices and biotic factors, such as 

competitors and natural enemies. Different agronomic practices affect the abundance and 

insecticidal activities of EPNs. For example, tillage and herbicide applications may suppress 

the EPN abundance. Fertilizers may reduce the EPN population density and activity for 

several reasons, such as the direct toxic effects of fertilizers or their decomposition products 

EPNs; an increase in biotic activity as a result of fertilizer application may increase predation 

and parasitism on EPNs; or fertilizers may reduce EPN survival by modifying the soil-

physical status. However, the effects of inorganic fertilizers varied according to their 

chemical composition, the innate characteristics of EPN species, and the duration of their 

exposure to the fertilizer. 

                  Because the potential interaction of EPNs, whether antagonistic or synergistic, 

with soil amendments is a key factor for successful biological control use, the attributes of 

the used fertilizer, EPN species, and relevant settings should be taken into consideration 

when assessing the EPN efficacy for use in the biological control of insect pests. In other 

words, understanding these interactions is essential to reveal suitable ways to enhance the 

potential of EPNs as biocontrol agents in a particular soil type 

5. EPN Tolerance and Susceptibility to Heavy Metals and Other Soil Chemical 

Pollutants: 

5.1. Hazardous Heavy Metals and Soil Pollution to Biota - A General Outlook: 

                 Firstly, heavy metals are common soil pollutants, viz., arsenic (As), cadmium 

(Cd), chromium (Cr), mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni). Carreira 

et al. (2004) reported that heavy metal contamination in the soil is caused by various types 

of metals, mainly Cu, Ni, Cd, Zn, Cr, and Pb. These pollutants are widely distributed and 

persist long-term in the soil environment (Ma et al., 2013). They are classified into the group 

of toxic elements, with very high degrees of risk for the environment (Kabata-Pendias and 

Brummer, 1992). Based on physical, physiological, and chemical properties, Pourret and 

Hursthouse (2019) classified the heavy metals into transition metals: such as Cr, manganese 

(Mn), iron (Fe), cobalt (Co), Ni, Cu, and molybdenum (Mo); post-transition metals: such as 

aluminum (Al), Zn, Cd, Hg, and Pb; alkaline earth metals: such as calcium (Ca), magnesium 

(Mg), beryllium (Be), and barium (Ba); alkali metals: such as lithium (Li), sodium (Na), 

potassium (K), and cesium (Cs); and metalloids, which are also referred to assemi-metals 

because of their metallic and non-metallic properties: such as boron (B), silicon (Si), As and 

antimony (Sb). 

                Although heavy metals naturally occur in the earth’s crust with large differences 

in concentrations, the pollution resulting from human activities has contributed to the high 
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existence of heavy metals in the ecosystem (Rasmussen et al., 2007). Heavy metals and 

metalloids are agricultural soil contaminants, because if present at high levels, they can 

negatively affect crop productivity (Maksymiec, 2007; Shahid et al., 2015). Also, there is 

more accumulation of heavy metals in the areas where agricultural activities, such as 

fertilizing, are conducted than in natural areas (Campos-Herrera et al., 2010).  

                   However, heavy metals like Pb, Cd, and Hg are biologically toxic, not only at 

high concentrations but also at low concentrations (Nyiramigisha et al., 2021). The increase 

of heavy metals concentrations in the soil results in toxic effects on the soil biota by affecting 

important microbial activities and reducing microorganism’s density and distribution (Singh 

and Kalamdhad, 2011). These metals are contributors to metabolic abnormalities in 

organisms particularly the consumers of food from plants and other crops grown in 

contaminated soil (Bakshi et al., 2018). In addition, their accumulation in the soil has a 

negative influence on the physiological activities of plants, such as photosynthesis, gaseous 

exchange, and nutrient absorption which result in plant growth reduction and dry matter 

accumulation (Gebre and Debelie, 2015; Ozcan et al., 2016). 

                  Once heavy metals have been introduced into the soil, they cannot be degraded 

either biologically or chemically and can persist in the environment for a long time, 

therefore, they cause serious environmental pollution and harmful effects on the ecosystem 

(Hoornweg and Bhada-Tata, 2012; Kasam et al., 2018). Many investigators have paid 

attention to soil contamination concerning the introduction of dangerous elements into the 

food chains through uptake by plants and thereby affecting food safety (Ozcan et al., 2016). 

From the physiological point of view, many heavy metals are included in coenzymes, active 

parts of vitamins, and respiratory dyes. They become if they enter biochemical reactions, 

which they normally do not take part in, and replace suitable substances (Jaworska et al., 

1999). Moreover, heavy metals penetrate into mitochondria and cause interruptions in the 

process of gas exchange; they also influence the ability of reproduction. Together with food, 

an animal may receive some xenobiotic elements, like Cd and Pb, which do not take part in 

metabolism, they are very dangerous, but they are consumed and assimilated by the animal, 

but become toxic when their concentrations become more than the allowable level (Hopkin, 

1994; Alengebawy et al., 2021). Recently, Abdur Rashid et al. (2023) provided a 

comprehensive review to evaluate several aspects in this context, such as the heavy metals 

and metalloids contamination in arable lands through agricultural practices, particularly due 

to chemical fertilizers, pesticides, livestock manures and compost, sewage-sludge-based 

biosolids, and irrigation. 

5.2. Interactions Between EPNs and Heavy Metals: 

                 In the world, several investigators have paid great attention to the interaction 

between EPNs and soil pollution with heavy metals and other pollutants (Korthals et al., 

1996; Shukurov et al., 2005; Moreno and Navas, 2007; Pen-Mouratov et al., 2008).EPN 

species diversity has been influenced by soil pollution, including pollution with heavy 

metals. For example, it, Directly and indirectly, influences the abundance of EPN species, 

their diversity and biomass (Kamionek et al., 2011). In this context, Kawaka et al. (2014) 

determined the effects of selected soil chemical characteristics on the occurrence of EPNs 

under different land uses in Kenya. They concluded that soil fertility management practices 

and heavy metals influence the occurrence of EPNs and should be considered for their 

effective use as biological control agents. 

                  As reported in the current literature, some heavy metals inhibit the EPN 

pathogenicity, while other heavy metal ions stimulate it (Pezowicz, 2004). On exposure to 

heavy metals, if EPNs do not respond directly by higher mortality, their infectivity and 

pathogenic abilities to hosts have decreased, which adversely affects their potential for pest 

control (Jaworska et al.,1997; Jaworska, 2014; Sun et al., 2016). Amounts of metals, such 
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as Iron (Fe2+), have been reported to have a weak vitalizing effect on the infectivity of EPNs 

with respect to caterpillars of G.mellonella (Jaworska et al., 1997). However, Campos-

Herrera et al. (2008) showed that metals, such as Cr, Fe, Mo, Ni, Va, Cd, Zn and Li, 

negatively affect the virulence and infectivity of EPNs. As reported by some authors 

(Jaworska and Gorczyca,2002; Debojitet al., 2011), high levels of some heavy metals 

negatively affect the survival, virulence and infectivity of EPNs. 

                  Kamionek et al. (2011) determined the influences of lead nitrate and cadmium 

nitrate on the EPN S. feltiae Filipjev infecting larvae of G. mellonella. Their results revealed 

various reducing effects of different concentrations of these metal compounds on the EPN 

vitality and IJs production inside the host body. A few years later, Jaworska (2014) evaluated 

the effect of magnesium sulphate on the reproduction of S.feltiae and the pathogenic abilities 

of its IJsliving in soil polluted with petrol, diesel oil and used engine oil. In the same regard, 

Ropek and Gospodarek (2022) evaluated the effect of soil pollution by petrol, diesel fuel and 

engine oil on the virulence of S. feltiae. Soil pollution with oil derivatives has a negative 

effect on S. feltiae ability to penetrate larvae of the mealworm beetleTenebriomollitor 

(Coleoptera: Tenebrionidae). The mortality of T. mollitor caused by S. feltiae was a 

sufficient indicator of the progress of bioremediation of petroleum pollutants, such as diesel 

oil and engine oil. 

5.3. EPNs and Non-Toxic Metal Ions: 

                 Several elements are classified as essential mineral nutrients for plant growth and 

productivity. Examples include Cu, Zn, Fe, Mn, Mo, Ni, Mg, Ca, and B. At relatively low 

concentrations, these elements can enhance specific cellular processes in plants including 

ion homeostasis, photosynthesis, enzyme activities, respiration, nitrogen fixation, sugar 

metabolism, etc. (Shahid et al., 2015; Bashir et al., 2016; Tiwari and Lata, 2018). However, 

when accumulated at concentrations over the optimum, the same essential elements can 

adversely affect plant growth, development, and reproduction (Maksymiec, 2007; Shahid et 

al., 2015). Conversely, if the concentration declines under certain threshold levels, they also 

produce mineral deficiency symptoms in plants (Bashir et al., 2016). 

                 With regard to the compatibility of EPNs with chemical elements, many chemical 

elements, such as Cu, Fe, Co, Se, Zn, occur in trace amounts in the living body and are 

essential for growth, development, and vitality. Because of their importance to the EPN 

vitality, essential chemical elements have received special attention from several 

nematologists(Nachev et al., 2013). Jaworska et al. (1997b) carried out some in vitro tests 

in the laboratory indicating the affected vitality and infectivity of EPNs in the presence of 

non-toxic metal ions. As shown by their results, also, Mn and Mgdid not affect 

thesurvivalofIJsofEPNsS.carpocapsaeandH.bacteriophora but enhanced their infectivity 

against G.mellonella. Also, a slightly stimulated reproduction of S. feltiae by Mn was 

recorded by Jaworska and Gorczyca (2002). Also, the same authors showed the role of both 

Mn and Mg inneutralizing the negative effect of Pb on S. feltiae mortality.  

               In contrast, some authors (Jaworska and Gorczyca, 2009; Sun et al., 2016) reported 

reducing effects of Cd, Cr, Zn, Pb, and Cuonthe reproduction of S.feltiae, S. carpocapsae, 

and H. bacteriophoraand reduced virulence against G. mellonella. However, the exact roles 

of Cd and Se in EPN biology are still unknown (Jaworska and Gorczyca, 2009). 

               For the improvement of EPNs, as effective bio-control agents, and a better 

understanding of the possible roles of non-toxicmetals in their physiology, Meligy (2018) 

studied the levels of ten elements in IJs of five Egyptian isolates of Steinernematidae and 

Heterorhabditidaefamilies. According to his results, Cu was the most abundant element in 

all EPN isolates. This result could be explained by the ability of EPNs, during their early 

stages inside the insect body, to collect and accumulate Cu from the surrounding Cu-rich 

insect haemolymph (Malik and Malik, 2009). Also, the abundance of Cu might be due to the 



Compatibility of Entomopathogenic Nematodes with Agrochemicals and Biocontrol Potential against Insect Pests 129 

Cu accumulation in IJs by the symbiotic bacteria associated with EPNs (Photorhabdus of 

Heterorhabditis spp. and Xenorhabdus of Steinernema spp.), for which Cu is known to be 

an essential trace element (Kuzuya and Inouye, 2001; Watson et al., 2010; Massaoud et al., 

2011). The uptake of Photorhabdus bacteria (associated with Heterorhabditidae)to Fe could 

also explain the detected high concentration of Fe ions in IJs and also explains their 

significantly higher concentration in EPNisolates related toHeterorhabditidaefamily than the 

concentration in isolates related to Steinernematidae family (Meligy, 2018). However, 

Jaworska et al. (1997a) mentioned that Fe and Cuions vitalized IJs of H.bacteriophoraand 

promoted their mobility and pathogenic abilities against the insect host.  

5.4. EPNs Are Good Bio-Indicators of The Environmental Pollutants: 

                In recent years,bio-indication has become an important tool for assessing the 

quality of soil environments. To unveil the real impact of pollutants on the environment, 

biological, not only physicochemical, methods should be used (Maurya et al., 2020).In this 

context, it is well known now that EPNs are natural enemies of many serious insects. 

Therefore, they have been increasingly used for the biological control of insect pests 

(Tomalak, 2006; Nouh and Adly, 2021; Patil et al., 2022). These EPNs are widely 

distributed, abundant and highly diverse, and play a key role in soil functioning (Van den 

Hoogen et al., 2019). They have been reported to respond differentially to xenobiotic 

substances (Bongers et al., 2001; De Nardo and Grewal, 2003; Jonker et al., 2004). 

                 As reported by several authors (Bongers and Ferris, 1999; Neher, 2001; Bongers 

et al., 2001; Georgieva et al., 2002; Achazi, 2002; Hao et al., 2010), EPNs are considered 

the most promising candidates for bio-indication of soil status and assessing the disturbance 

of soil ecosystem, particularly in soils polluted with heavy metals.EPNs have been 

recognized as good bioindicators of soil fertility since the 1970s in both Europe (Zullini, 

1976; Devi, 2020) and NewZealand (Yeates, 1979), and since the 1980s in the USA (Yeates 

and Coleman, 1982; Ingham et al., 1985; Freckman, 1988).In recent years, Khanum et al. 

(2021) reported that soil EPNs have advantages as bio-indicators because they have a 

beneficial role in the food web. EPNs, associated with their endosymbiotic bacteria, are 

probably the most studied bio-indicators of soil health and fertility because they have 

different beneficial ways to increase soil functions.  

               As previously mentioned, EPNs are also sensitive to oil derivatives, which affect 

their death rate and ability to penetrate the host insects (Ropek and Gondek, 2002; Ropek 

and Gospodarek, 2013). This property makes them candidates as indicators for this kind of 

pollution. Generally, pollution can induce tolerance in EPNs through a selection of tolerant 

strains within the population (Millward and Grant, 2000). In their study, Ekschmitt and 

Korthals (2006) analyzed whether different EPNs genera proved sensitive or tolerant toward 

heavy metals and organic pollutants. They discussed overlaps between EPNphysiological 

responses to heavy metals and organic pollutants, which may explain why EPNs can exhibit 

co-tolerance toward several contaminants. For more details about the importance of EPNs 

as bio-indicators of environmental status, see reviews of Devi (2020) and Khanum et al. 

(2021).  

6. Compatibility of EPNs with Crude Plant Extracts And Isolated Phytochemicals: 

6.1. Botanicals for the Insect Pest Control-Basic Information: 

                Prior to reviewing the interactions between EPNs and phytochemicals, it is 

important to shed some light on the phytochemicals produced by different plants and their 

uses for insect pest control. The practice of using plant extracts for pest control is not new; 

they have been used for at least two millennia when botanicals were considered important 

products for pest control in Ancient China, Egypt, Greece and India (Isman, 2006; Dougoud 

et al., 2019). Also, these natural materials were usually used, before the discovery of 

synthetic insecticides in the late 1930’s and early 1940’s (Isman, 1997). 
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                As reported by several authors (Nakatani et al., 2001: Clemente et al., 2003; 

Isman, 2008; Lokesh et al., 2017), plants contain numerous active phytochemicals of broad-

spectrum insecticidal activity. Therefore, they have gained the great attention of researchers 

all over the world because of their safety to humans and beneficial animals, less toxicity to 

other non-target organisms and biodegradability in the environment ecologically 

acceptable(Ghoneim et al., 2000; Silva et al., 2002; Omar et al., 2007; Rawi et al., 2011). 

Because botanicals are effective alternatives to synthetic insecticides, they are useful in 

many pest management programs (Matthews, 1999; Shekari et al., 2008; Dadang et al., 

2009; Ebadollahi, 2013). In Egypt, as an example, a large body of research has been 

conducted to monitor the insecticidal activity of extracts of different plants and various 

phytochemicals against many insect pests (Ghoneim et al., 2002, 2007, 2009, 2022, 2023; 

Farag, 2002; Sadek, 2003, Hamadah et al., 2013). 

                Functionally, phytochemicals kill the target insect pest directly or disrupt its 

physiological processes (Thompson et al., 2000; Smagghe et al., 2003; Magierowicz et al., 

2019). They can act as attractive, repellent, or toxic agents, as well as growth disrupting 

agents against insects (Khambay et al., 2002; Liang et al., 2003; Dubey et al., 2010; 

Céspedes et al., 2013; Ben Hamouda et al., 2015a, b, c; Senthil-Nathan, 2015; Ghoneim et 

al., 2020, 2021; Hamadah et al., 2021). It is more difficult for insect pests to develop 

resistance to phytochemicals (Isman, 2000; Isman and Akhtar, 2007).  

                Until now, there are more than 2000 plant species known to have insecticidal 

properties, where the Meliaceae, Asteraceae, Labiateae, Piperaceae and Annonaceae are 

most promising for pest control(Isman, 2006). Later on, Castillo-Sánchez et al. (2010) 

reviewed different plant extracts from the Annonaceae, Meliaceae and Solanaceae families 

and the compounds or mixtures of compounds obtained as well as their modes of action 

against insect pests. On the other hand, plants that have biological activity against insects 

contain secondary metabolites, some of which have been widely investigated (Salvadores et 

al., 2007; Chandra et al., 2008). Nowadays, these metabolites are no longer termed 

secondary, but rather specialized metabolites (Kortbeek et al., 2019). These metabolites are 

used for defense against herbivorous insects (Carpinella et al., 2002; Ahmad, 2007; Urzúa 

et al., 2011; Céspedes et al., 2013).  

               The currently available literature reported hundreds of compounds isolated and 

identified from tens of metabolites from various higher plants and reported as potent control 

agents against various insect pests(Carpinella et al., 2002; Koul, 2005; Simmonds, 2006). 

Among these metabolites are diterpenoids,triterpinoids, sesquiterpenoids, sesquiterpene 

lactones, flavonoids, quassins, quinines, alkaloids, limonoids, cucurbitacines, tannins, 

steroidal glycosides, steroidal saponins, steroids, phenylpropanoids, aromatic steroids and 

phenolics stand out (Urzúa et al., 2010a, b; Paul and Choudhury, 2016; Hikal et al., 2017). 

On the other hand, some authors (Lingathurai et al., 2011; Guzel et al., 2015)reported that 

among the plant metabolites with biological activities against insects, flavonoids, terpenoids, 

alkaloids, steroids and phenols stand out. 

               For detail, terpenes are a large and diverse class of natural compounds that are 

produced by many plant species, and they play an important role in the defense mechanisms 

of plants against herbivores, pathogens, and other stress factors (Hazir et al., 2003; Grewal 

et al., 2005; Gershenzon and Dudareva, 2007; Lacey and Georgis, 2012; Singh and Sharma, 

2015; Boncan et al., 2020; Yüksel et al., 2022). They exhibit a broad spectrum of effects, 

ranging from toxicity to insects (Lee et al., 2003), fungi (Hammer et al., 2003), and bacteria 

(Friedman et al., 2002), to serve as feeding deterrents to mollusks (Frank et al., 2002), insects 

(Szczepanik et al., 2005), and mammals (Vourc’het al., 2002). Terpenes have emerged as 

promising alternatives to synthetic insecticides in plant protection, with numerous 

commercial products developed for pest control and they are recognized as environmentally 
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safe (Isman,2000; Koul et al., 2008; Seiber et al., 2014; Greff et al., 2023).  

                With regard to neem products, the neem tree, Azadirachta indica, is the most 

famous species in the family Meliaceae(order: Rutales). It has received much attention to 

developing alternatives to synthetic insecticides at least partly owing to the presence of 

limonoid triterpenes (Isman et al., 2002). Most research works have focused on azadirachtin, 

alimonoid from the seeds of A. indica. Neem seed extracts rich in azadirachtin (10-25%) act 

both as a potent antifeedant and insect growth regulator (Govindachari et al., 2000; Kraus, 

2002). Debashri and Tamal (2012) reviewed several biopesticides based on the neem A. 

indica. The remarkable bioactivity exhibited by azadirachtin from A. indica led to the search 

for other natural insecticides in the closely related genus Melia such as Melia azedarach. 

Some of the limonoids isolated from the fruits of M. azedarach are meliantriol, melianone, 

melianol, meliacin (1-cinnamoyl melianone),meliacarpin and meliartenin (Carpinella et al., 

2002).  

                 In respect of plant growth regulators, Environmental Protection Agency defined 

the plant growth regulator (PGR)as "any substance or mixtures of substances intended, 

through physiological action, to promote or retard the rate of growth or maturation or 

otherwise alter the behavior of plants (Yau, 2011; Mahajan, 2015). Although these 

phytochemicals affect the physiological activity of plants, many PGRs appear to exhibit 

adverse effects on the survival, biology, physiology, biochemistry and behavior of 

herbivorous insects (Kaur et al., 2016; Abo Elsoudet al., 2021 a, b; Ghoneim et al., 2022, 

2023; Hamadah et al., 2022). In the last four decades, many authors (Kaur and Rup, 2002; 

Ahmad et al., 2003; Silva et al., 2003; Kaur and Rup, 2003; Gupta et al., 2009; Bhatnagar, 

2010; Uçkan et al., 2011a, b, 2014, 2015; Altuntaş, 2015; Abdellaoui et al., 2015) suggested 

that the PGRscan be used as alternative to the synthetic insecticides for controlling the 

economically serious insect pests. In addition, synthetic PGRs mimic the authentic PGRsand 

are marketed specifically for the purpose of stimulation or retardation of plant growth and 

development. They are, also, used for reduction of the insect pest infestation on crop plants 

(Gupta et al., 2009; Memon et al., 2011; Ali et al., 2012). 

                   In summary, plant-derived substances, natural plant products and bio-

insecticides have recently become of great interest owing to their versatile applications for 

the protection of economically important crops due to their low mammalian and vertebrate 

toxicity, as well as low persistence and no undesirable effects on animals and human beings 

(Raja et al., 2001; Meena et al., 2006). Natural products, such as plant extracts and products, 

form promising nonconventional pesticides against destructive pests for crops and health. 

Neem products, as an example, were considered effective insect growth regulators (Hashim 

and Devi, 2003) and toxicants (Saxena et al., 1989; Baris et al., 2006). Because of the 

multiple sites of action through which the plant materials can act, the probability of 

developing a resistant population is very low (Isman, 2006). Some authors used the term 

"phytopesticides" or "botanical insecticides" to describe many phytochemical compounds 

that exhibit various mechanisms of action; likewise, they are of lesser risk to human health 

compared to the available synthetic insecticides (Malahlela et al., 2021; Idris et al., 2022). 

They degrade rapidly in air and moisture and are readily broken down by detoxification 

enzymes. This is very important because rapid breakdown means less persistence in the 

environment and reduced risks to non-target creatures (Isman, 2008). 

6.2. Compatibility of EPNs with Crude Plant Extracts: 

                Crude plant extracts are considered one of the most important control agents 

against insect pests because they are less hazardous to non-target organisms, 

environmentally safe, biodegradable, cheap, and effective, as well as they may have different 

modes of action and inadequate development in pests (Senthil-Nathan et al., 2009; Mansour 

et al., 2012; Cantrell et al., 2012; Kabir et al., 2013). The compatible relationship between 
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plant extracts and the EPNs may lead to improved pest control in agricultural systems (Oso 

et al., 2021).  

               Based on the available literature, there are some studies focusing on the interaction 

between EPNs and plant extracts. For example, Kulkarni et al. (2013) found that a 

combination of the extracts of jatropha, pongamia, and custard apple, allowed survival of 

only 42.40% IJs of EPN S. carpocapsae after exposure to the highest concentration (0.3%), 

while the lowest concentration (0.05%) allowed more survival (84.0%).  In another study, 

the effects of aqueous extracts of green waste compost, dry leaf litters of the common walnut 

(Juglans regia)(Family: Juglandaceae) and Norway maple (Acer platanoides) (Family: 

Sapindaceae)were determined on IJs of EPNs H. bacteriophora, S. carpocapsae, S. feltiae, 

and S. kraussei (Petrikovszki et al., 2019). According to the results of this study, green waste 

compost extracts caused quite low or no mortality of all EPN species. Mortality caused by 

the Norway maple leaf litter extract (concentration 5%) was moderate (34.6%) in the case 

of S. carpocapsae IJs, the highest concentration(5%) of the common walnut leaf litter extract 

caused 100% mortality in all EPN species. As a conclusion, green waste compost mulch 

seemed to be more compatible with EPN species than common walnut or Norway maple leaf 

litter mulch.  

                 Quiescence (or dormancy) of EPNs normally is triggered by adverse 

environmental conditions (Barrett, 1991). During this state of dormancy, the metabolism of 

EPNs is strongly reduced allowing them to conserve energy, which can significantly prolong 

their lifespan and infectiousness (Hiltpold et al., 2014). Quiescence is finished when the 

conditions turn more favorable. Quiescence also can be chemically triggered, such as with 

compounds in exudates of root caps of certain plants (Hubbard et al., 2005; Zhao et al., 

2000). Hiltpold et al. (2014) showed that exposure to pea root cap exudates conserves the 

EPN motility and infectivity. In this respect, also, Jaffuel et al. (2015) carried out a study to 

assess extracts from pea (Pisum sativum) (Family: Fabaceae) and maize (Zea mays)(Family: 

Poaceae) roots for induction of the quiescence in the EPNH megidis. Based on their results, 

IJs exposed to these extracts readily recovered from their quiescent state. 

                Pulavarty et al. (2020) evaluated the effect of Alltech®(an organic product 

consisting of a blend of fermentation and plant extracts with micronutrients) on EPNs (S. 

feltiae (SB12(1), a wild enviroCORE strain and a commercial form e-NEMA), S. 

carpocapsae (e-NEMA), and H. bacteriophora) in the greenhouse of tomato plants. They 

found no significant difference in the survival of IJs with 4% Alltech® compared to the 

control. A twofold reduction in survival was observed after exposure of EPN to 7% Alltech®. 

Therefore, Alltech® showed potential as a sustainable soil health alternative causing no harm 

to EPNsat concentrations below 4%. According to Oso et al. (2021), the compatibility of 

some extracts of the medicinal plants Alepidea amatymbica (Family: Apiaceae) and 

Elephantorrhiza elephantina (Family: Fabaceae) was assessed with five locally isolated 

EPN strains, Steinernema (S. khoisanae, S. biddulphi and S. innovationi) and 

Heterorhabditis (H. bacteriophora and Heterorhabditis sp. SGI 244). This study has shown 

that the corm and root extracts of A. amatymbica and E. elephantina are compatible with 

EPN strains and enhanced their virulence against the mealworm beetle Tenebrio molitor 

(Coleoptera: Tenebrionidae) after 72 h post-exposure.  

                On the contrary, the available literature contains some studies revealing the 

incompatibility of certain EPNs with crude extracts of a number of plants, since survival, 

viability, or/and infectivity of EPNs against insect pests may be adversely affected by these 

extracts. For example, the toxic effect of tannin-rich plant extracts was recorded in the case 

of H. bacteriophora (Glazer et al., 2015). According to results obtained by Rohde et al. 

(2013), aqueous extracts of chinaberry fruits (Melia azedarach)(Family: Meliaceae), 

common rue leaves (Ruta graveolens)(Family: Rutaceae), ginger (Zingiber 
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officinale)(Family:Zingiberaceae) and garlic (Allium sativum) (Family: Amaryllidaceae) 

reduced the viability and infectivity of S. carpocapsae against larvae of C. capitata and EPN 

became incompatible after 120 h of exposure.  

                In a study of Shamseldean et al. (2013), the compatibility of the EPNsH. indica 

and H. bacteriophora with plant oils (like mint oil, camphor oil)or plant extracts(like extracts 

of Dodonaea viscose, family: Sapindaceae, and Euphorbia cotimfabia, family: 

Euphorbiaceae) was investigated against grasshopperHeteracrirlittoralis (Orthoptera: 

Acrididae). Based on their results, IJs of EPNs were negatively affected by the presence of 

plant oils and extracts. Also, the grasshopper was susceptible to EPN species, either alone 

or combined with plant oils and plant extracts. In another study, Santhi et al. (2017) recorded 

inhibitory effects of ethanolic extracts of Inula viscose (Family: Asteraceae), Salix alba 

(Family: Salicaceae) and Quercus calliprinos (Family: Fagaceae)on the developmental 

stages(eggs and young infective juveniles, IJs) of EPN H. bacteriophora.  

               The oil extracted from the herb Ferulaasa foetida (ASF)(Family: Apiaceae) has 

been used as an insect repellent against thrips, feeding deterrent and as an insect oviposition 

deterrent (Shakeri, 2004; Noonari et al., 2016; Shaik et al., 2017). Co-examining the 

relationship between ASF and EPNsmay be the most effective method for assessing the 

virulence and pathogenicity of EPNsagainst insect pests. Most of the ASF/nematode co-

interaction research has been conducted on plant or alimentary parasite nematodes, with no 

reports on EPNs (Farhadi et al., 2016; Tavassoli et al., 2018). Recently, Abdul Shaik and 

Mishra (2023) carried out a study to elucidate the metabolic factors underlying the co-

interaction of ASF with the EPNS. carpocapsae and their symbiotic bacteria, Xenorhabdus 

nematophila, revealing their virulence in the host European firebug Pyrrhocoris apterus 

(Hemiptera: Pyrrhocoridae). The S. carpocapsae pre-treated with 100 mg of ASF caused 

24–91.4% P. apterus’s mortality during a period of 24 to 72 h. The topical application of 

ASF acted as a deterrent to S. carpocapsae, inhibiting the host invasion to 70% and delaying 

infectivity with 30% mortality for 168 h. In this study, the modulation of immunity in P. 

apterus, during such co-interactions, was also studied. EPN/ASF combination showed an 

immunomodulatory effect in P. apterus.  

6.3. Compatibility of EPNs with Plant-Derived Compounds: 

                 Several authors (Bedding, 2006; Laramliana and Yadav, 2008: Kulkarni et al., 

2013; Lacy et al., 2015; Anes and Ganguly, 2016; Devi, 2022) reported that the combination 

of plant-derived products with EPNs can provide a new good commercial formulation for 

efficient pest control. As clearly shown in the current literature, interactions between EPNs 

and botanicals have been investigated by several studies showing tolerance, lethal or sub-

lethal effects on survival and virulence, or synergistic effects on IJsof different species 

around the world (Hussaini et al.,2001; Sankaranarayanan, et al., 2006; Laznik, et al., 2012; 

Paunikar, 2014; Raheel et al., 2017). In other words, the compatibility varies with the EPN 

species, strain, botanical formulation, application dose and other factors (Koppenhoffer and 

Grewal, 2005). It may be important to mention that terpenes, such as limonene, pinene, 

caryophyllene, and pregeijerene, represent an important component of the EPN capability 

for finding an available host. Not all EPN species respond equally to terpenes because a 

terpene may be attractive to one EPN species and repellent to another, which could explain 

different susceptibility levels when two species are exposed to a terpene (Willett et al., 

2015).  

EPNs in Combination with Neem: 

                 A comprehensive study by Halder et al. (2013) showed that a combination of 

neem oil®(Azadirachtin and other compounds)with entomopathogens was very successful 

against insect pests, particularly vegetable-sucking pests. Otherstudies have shown that 

neem oil® does not affect the survival, virulence, or infectivity of EPNs when combined 
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together (Piggott et al., 2000). The compatibility of neem oil®tovarious EPN species was 

reported by many studies, such as two species of Steinernema and three species of 

Heterorhabditis (Hussaini et al., 2001), S.carpocapsae (Koppenhofer and Grewal, 2005) as 

well as S. feltiae, S. asiaticum, H. bacteriophora and H. indica (Raheel et al., 2017). 

According to Head et al. (2000), direct exposure of S. feltiae to neem oil® resulted in 

negligible effects on EPN survival. The soap surfactant in commercial neem products was 

found to cause low mortality (23-25%) of S. feltiae (Krishnayya and Grewal, 2002). A study 

of a combination of neem with two strains of S. glaseri, four strains/isolates of H. 

bacteriophora and an undescribed Heterorhabditis species from Korea was conducted 

against different species of white grubs (Coleoptera: Scarabaeidae). Results showed that 

their combination was better than the use of EPN alone (Koppernhoofer and Fuzy, 2003). 

               Also, the dual attack by EPNs combined with neem on the pest could have brought 

about the synergistic effect which resulted in the population reduction of the tomato leaf 

miner Tuta absoluta (Lepidoptera; Gelechiidae)(LaznicandTrdan, 2013). Also, EPN species, 

combined with neem pellets, were reported with additive effects on western flower thrips 

Frankliniella occidentalis (Thysanoptera: Thripidae)(Otieno et al., 2015).In another study, 

Nitjarunkul et al. (2015) found that the survival rate of S. carpocapsae, combined with neem, 

was more than 94.5%, but its virulence was decreased by longer soaking periods of G. 

Mellonella larvae. As shown by the results of Sinhouenon et al. (2019) on P. xylostella in 

northern Benin, the neem oil®displayed negligible effects on the survival of EPNs 

Steinernema sp. 83a and Heterorhabditis sonorensis KF723827. In addition, Paunikar and 

Kulkarni (2020) evaluated the compatibility of IJs of S. dharanaii (TFRIEPN-15) with neem 

oil®. Their results indicated no detrimental effect on the survival, infectivity and progeny 

production of S. dharanaii, which was exposed to the recommended lower or highest 

concentration of neem oil. 

EPNs in Combination with Isolated Azadirachtin: 

               As previously mentioned, Azadirachtin(a tetranortriterpenoid derived from the 

neem seed of the Indian neem tree Azadirachta indica A. Juss, Meliaceae, Azt) is the most 

important neem product. TheAzt was reported to cause no harm to the survival or infectivity 

of EPN S.carpocapsae strain All (Yan et al., 2012) and other EPN species (Yan et al., 2012). 

Research conducted by Laznic and Trdan(2013) on the compatibility of Azt with EPNs 

revealed that the mortality rates for IJs were comparable with the control (water only) 

treatment. Similar results were previously obtained by Grewal et al. (1998) who showed that 

S. feltiae was compatible with Azt. Also, these results were in agreement with the results 

recorded by Ali et al. (2012) about the compatibility of EPNs with Azt at lower doses and 

short-term exposure. 

                In Egypt, Mahmoud et al. (2016) carried out some compatibility tests for S. 

carpocapsae and H.bacteriophora with Azt. Their results recorded greater efficacy against 

larvae of the black cutworm Agrotis ipsilon when EPNs were combined with, causing over 

90% larval mortality. In Egypt, also, AskaryandAhmad(2020) conducted some compatibility 

tests for EPN H. pakistanensis with Azt under field conditions. Based on their results, H. 

pakistanensis (3.0 lakh IJs/m2) +Azt (0.25%) caused 76.22% larval mortality of P. brassica. 

The cumulative mean survival of H. pakistanensis IJs recorded the highest (77.5%) in the 

combination of 100 IJs +Azt (0.25%). In Pakistan, Raheel et al. (2017) studied the 

compatibility of S. feltiae, S. asiaticum, H.bacteriophora and H. indica, with Azt against G. 

Mellonella larvae. They found that Azt proved to be compatible with all EPNs species. A 

few years later, a combination of Azt with the Turkish EPN isolates (H. bacteriophora FLH-

4H, S. carpocapsae KCS-4S and S. feltiae KMP-9S) resulted in 70 - 95% larval mortality of 

G. mellonella under laboratory conditions (Yüksel and Canhilal, 2020). In contrast, the 

compatibility tests conducted by Jean-Baptiste et al. (2021) using H. bacteriophora HB and 
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S. brazilense (IBCB- n06) for the control of C. capitata revealed that Azt negatively affected 

the IJs of both EPN species. However, several studies with Heterorhabditis spp. and 

Steinernema spp. demonstrated their compatibility with Azt (Andaló et al., 2004; Radova, 

2011; Yan et al., 2012; Laznik and Trdan, 2014; Chavan et al., 2018). 

EPNs in Combination with some Azt-Based Products: 

                Since the isolation and identification of Azt from neem seed kernel and carrying 

out some bioassay tests against various insects and other animals, growing attention has been 

given to this product. Many companies in India (the origin) and other countries around the 

world paid great interest in formulating dozens of commercial products (with different 

concentrations of the active ingredient) under various trade names, such as NeemGuard, 

BioNeem, NeemAzal, Neemix, Nimor, Neemgold®, Nimbecidine®, etc. Some Azt-based 

products(NeemAzal T 5% and Neemix 4.5%) and the EPNS.feltiae were evaluated for 

controlling the peach fruit fly Bactrocera zonata (Diptera: Tephritidae). The combined use 

of these products, especially NeemAzal T 5%, with S. feltiae may offer an integrated 

approach to increase the efficacy of EPN to control B. zonata, (Mahmoud, 2007). Meyer 

et al. (2012) determined the effects of NeemAzal-U on the EPNH. bacteriophora. The 

number of IJs produced per G. mellonella larva was not influenced by NeemAzal-U 

treatments of IJs used for host infection. Against larvae of A. ipsilon, Mahmoud et al. (2016) 

assessed the combinations of EPNs S. carpocapsae and H. bacteriophora (at 80 IJs 

concentration) with Neemazal and neemix and recorded an induction of the EPNs efficacies 

to cause significantly increased larval mortality rates under the laboratory or greenhouse 

conditions. Therefore, they recommended the use of a mixture of Azt-based products + EPNs 

to achieve an efficient control of A. ipsilon.  

                 Concerning the EPN computability with Neemgold®, Kulkarni et al. (2013) tested 

this product against EPN S. carpocapsae. Based on their results, the highest concentration 

(2.00%) allowed 69.60% survival up to 72 h, followed by 80.80% at the concentration of 

1.5%, then 87.20% and 92.40% survival at a concentration of 1.00% and the lowest tested 

concentration (0.5%). Moreover, Neemgold® was reported to exhibit no detrimental effect 

on the survival, infectivity and progeny production of EPN S. dharanaii, which was exposed 

to the recommended lower or highest concentration of this product (Paunikar and Kulkarni, 

2020). Some years later, Devi (2022) conducted a laboratory study to evaluate the 

compatibility of H.bacteriophora with NimbecidineagainstA.ipsilon. His data showed that 

the survival rate of EPN exposed to Nimbecidine was 53% but its virulence against insect 

larvae ranged from 60 % to 70% mortality. Also, the penetration rate of IJs of H. 

bacteriophora in larvae reached 55.5% when exposed to 0.125% of Nimbecidine. Also, a 

combination of EPNs withNimor took 48h to cause 100% larval mortality of G. mellonella 

(Sankar et al., 2009). On the contrary, very few studies indicated the incompatibility of some 

EPN species with some Azt-based products. In a study, Meyer et al. (2012) found that 

NeemAzal-U caused remarkable mortality of H. bacteriophora but the virulence was not 

affected.  

EPN in Combination with Botanicals Other Than Neem Products: 

                 Limited knowledge exists in the current literature on the assessment of EPN 

combination with botanical compounds other than neem products. Derisom® EC is a 

bioacaricide/bioinsecticide based on the botanical extract of Pongamia glabra/ Pongamia 

pinnata (Karanj tree). Derisom® EC contains Karanjin as the active ingredient. Paunikar and 

Kulkarni (2020) evaluated the compatibility of IJs of S. dharanaii with Derisom®. The 

results indicated no detrimental effect on the survival, infectivity and progeny production of 

EPN, which were exposed to the recommended lower or highest concentration of this 

product. 

               In contrast, Santhi et al. (2019) examined the effects of some phenolic compounds 
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(plant secondary metabolites) on the developmental stages of H. bacteriophora. They 

recorded the antagonistic effects of these compounds on EPN. The ability of EPN to tolerate 

phenolic compounds was stage-dependent, with early growth stages exhibiting less 

resilience than later growth stages. The EPN was able to survive in the presence of medium 

and low concentrations of all tested compounds, but very few of those treatments allowed 

for reproduction beyond the IJ stage and, at low concentrations. In a recent study, Kotsinis 

et al. (2023) evaluated the toxic effects of four terpenoids, thymol, carvacrol, eugenol, and 

geraniol, on S. feltiae, S. carpocapsae, H. bacteriophora and H. indica and their virulence 

against 4th instar larvae of G. mellonella. All terpenoids showed toxic activities against at 

least two of EPN species, and carvacrol was the most potent toxic and H. bacteriophorawas 

the highest sensitive EPN. In their conclusion, terpenoids such as thymol, carvacrol, and 

eugenol, used commonly for pest control, should not be combined with H. indica and H. 

bacteriophora but could be combined with S. feltiae and S. carpocapsae.  

EPN in Combination with Plant Growth Regulators(PGRs): 

                 The current literature contains very limited results concerning the effects of PGRs 

on EPN survival, viability and infectivity.De Nardo and Grewal (2003) assessed the 

compatibility of EPN S. feltiae Filipjev with three PGRs, ancymidol (A-Rest), paclobutrazol 

(Bonzi), and uniconazole-P (Sumagic). The EPN was compatible with no loss in viability 

and infectivity up to 24 h of exposure. The viability of S. feltiae was more than 80% in all 

the products even after 72 h of exposure. Ozomite® is a natural product mined from an 

ancient mineral deposit in Utah (USA) that typically contains over 70 minerals and trace 

elements. It is used internationally as a feed additive and a soil re-mineralizer for plants. 

Paunikar and Kulkarni (2020) evaluated the compatibility of IJs of S. dharanaii with 

Ozomite®. The results indicated no detrimental effect on the survival, infectivity and 

progeny production of EPN, which were exposed to the recommended lower or highest 

concentration of this product. 

Summary Points: 

* Entomopathogenic nematodes (EPNs) are biocontrol agents against a wide variety of insect 

pests in the world for their characteristics of infectivity and compatibility with different 

control measures.  

* Several environmental factors directly influence EPN populations in the soil, such as 

humidity and temperature, as well as environmental extremes or the resistance of certain 

insect pests to EPN penetration. Under these circumstances, EPNs cannot exhibit high 

virulence on the targeted insect pests, therefore, they should be applied in combination with 

some compatible agrochemicals to enhance the control efficacy, with greater cost reduction 

in application time required.  

* It should be kept in mind that the main goal of this strategy is the enhancement of EPN 

effectiveness for more efficient control of certain insect pests on the plants. In addition, this 

strategy has been applied to provide an understanding of how the naturally occurring EPN 

in soils can be better preserved in agroecosystems. 

* In this context, many studies have found the infective juveniles (IJs) of EPNsare tolerant 

to short exposures (2-6 h) of many insecticides, fungicides and herbicides and therefore 

EPNs can be tank-mixed and applied together with these compounds. 

* With regard to chemical insecticides, there has been increasing evidence that the 

combinations of EPNs with them represent a strategy to provide more effective pest control, 

particularly when both agents interact synergistically. Also, many EPNs belonging to the 

families Steinernematidae and Heterorhabditidae have been found to survive under exposure 

to different chemical pesticides. 

* Some challenges should be taken into account since some insecticides did not interact with 

some EPN species while other insecticides enhanced the EPN efficacy (synergistic 
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interaction). Also, some studies indicated the detrimental impacts of some insecticides on 

the EPN efficiency, in terms of infectivity and survival, against several insect pests 

(antagonistic interaction).  

* With respect to the insecticide categories, many studies worldwide indicated the 

compatibility of different EPNs with various kinds of organophosphates, while some studies 

reported the high toxicity of some insecticides of this class to survival of some EPNs or at 

least incompatibility with each other. The reported results of interactions between some EPN 

species and insecticides of other classes were almost similar to these obtained results. 

* The majority of studies investigating the influence of herbicides on EPNs indicated that 

they have no drastic effects on different EPNs that were compatible with these 

agrochemicals. On the other hand, few studies have reported the incompatibility of certain 

EPNs with some herbicides. Some reported studies indicated almost similar results on EPNs 

with fungicides.  

* Time of exposure is avery important factor for efficient EPN/insecticide combination 

because some studies revealed that the combination of chemical insecticides with S. 

carpocapsae and H. indica after 48 h of exposure have additive or synergistic effects on the 

targeted insect pest. By increasing the exposure time to 96 h, the interactions of EPNs and 

insecticides turned antagonistic and can reduce the EPN viability and infectivity. 

* A great effort has been exerted in the world to handle the aforementioned challenges, since 

the extent to which EPNs interact with chemical pesticides depends on a number of factors, 

including EPN species, rates and timing of application, developmental stage of the targeted 

pest, exposure method and the environmental complexity in which the interaction takes 

place. Furthermore, the life stage of the targeted insect interferes with the compatibility of 

EPN with insecticides.  

* Insect growth regulators (IGRs) have been used for insect pest control as an effective 

alternative to synthetic insecticides. Based on the specific mode of action, IGRs had been 

categorized into three categories: (i) juvenile hormone analogues, JHAs, also called 

Juvenoids), (ii) Ecdysteroid agonists and (iii) Chitin synthesis inhibitors (CSIs) or moult 

inhibitors. 

* Little studies examined the compatibility of EPNs with juvenoid compounds. Results of 

some studies revealed compatibility of certain EPNs with some juvenoids while other studies 

recorded incompatibility and drastic effects of some juvenoids on the survival and viability 

of EPNs. To a great extent, similar results had been obtained for the combinations of EPNs 

with other IGR categories, ecdysteroids and chitin synthesis inhibitors.   

* Naturally, EPNs are affected by various abiotic soil properties which may be drastically 

altered by agricultural management practices and biotic factors, such as competitors and 

natural enemies. Different agronomic practices affect the abundance and insecticidal 

activities of EPNs. For example, some organic fertilizers may reduce the EPN population 

density and activity. However, the effects of inorganic fertilizers on EPNs varied according 

to their chemical composition, the innate characteristics of EPN species, and the duration of 

their exposure to the fertilizer. 

* Because the potential interaction of EPNs, whether antagonistic or synergistic, with soil 

amendments is a key factor for successful biological control use, the attributes of the used 

fertilizer, EPN species, and relevant settings should be taken into consideration when 

assessing the EPN efficacy for use in the biological control of insect pests. 

* Several investigators have paid great attention to the interaction between EPNs and soil 

pollution with heavy metals and other pollutants. Some heavy metals were reported to inhibit 

the EPN pathogenicity, while other heavy metal ions stimulate it. On exposure to heavy 

metals, if EPNs do not respond directly by higher mortality, their infectivity and pathogenic 

abilities to hosts have decreased, which adversely affects their potential forpest control.  
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* Also, soil pollution by petrol, diesel fuel and engine oil negatively affects the virulence of 

some EPN species. Some authors mentioned that some non-toxic metal ions vitalized IJs of 

EPN and enhanced their mobility and pathogenic abilities against the insect host.  

* Because EPNs play a key role in the soil functioning since they respond differentially to 

xenobiotic substances. EPNs, associated with their endosymbiotic bacteria, are considered 

the most promising candidates for the bio-indication of soil state and assessing the 

disturbance of soil ecosystem, particularly in soils polluted with heavy metals. 

* Several studies concluded that the combination of plant-derived products with EPNs can 

provide a new good commercial formulation for efficient pest control. The interactions 

between EPNs and botanicals have been widely investigated and showed EPN tolerance or 

lethal effects of botanicals on their survival and virulence. Various plant-derived products 

were assessed in this area of research, such as neem, neem oil®, Azadirachtin and 

Azadirachtin-based products.  

* In respect of botanical compounds other than neem products, very few studies have been 

conducted to assess the EPN computability with some compounds. Diverse results were 

obtained with the prevalence of antagonistic interactions. In addition, some EPN species 

were found compatible with a few plant growth regulators. However, such research can be 

considered still at the beginning stage. In addition, the compatible relationship between plant 

extracts and EPNs may lead to improved pest control in agricultural systems. Many studies 

in this area of research demonstrated diverse results.  

* Finally, compatibility varies with the EPN species, strain, botanical formulation, 

applications dose and other factors 

Conclusions and Future Prospective: 

                EPNs are biocontrol agents against various insect pests for their properties of 

infectivity and compatibility with different control agents. Under certain circumstances, they 

fail to exhibit high virulence on the insect pests; therefore, they should be applied in 

combination with some other control agents such as agrochemicals. Thus, the main goal of 

this strategy is the enhancement of EPN effectiveness for more efficient control. As clearly 

shown in the present review, the infective juveniles (IJs) of EPNsare tolerant to short 

exposures (2-6 h) of many insecticides, fungicides and herbicides and therefore EPNs can 

be tank-mixed and applied together with these compounds. Many EPN species belonging to 

the families Steinernematidae and Heterorhabditidae have been found to survive under 

exposure to many chemicals and pesticides of different classes. The majority of studies 

investigating the influences of herbicides and fungicides on EPNs indicated that they have 

no drastic effects on the survival, viability and infectivity of different EPNs. Also, research 

results revealed compatibility of certain EPNs with some insect growth regulators, fertilizers 

and phytochemicals, while few kinds of these agrochemicals have been found incompatible 

with EPNs.  

                In conclusion, the combination of EPNs with compatible agrochemicals is a 

promising approachto the pest control strategy. It has many advantages, such as reducing the 

dependence of farmers on synthetic insecticides alone.EPNs may be combined with various 

compatible agrochemicals with additive, or preferably synergistic, effects on pest mortality. 

For convenience, EPNs may also be tank-mixed with some compatible agrochemicals that 

are combined in the tank of the application tool, thus increasing the chances of interactions 

of both control agents. In this context, also, the exposure period should also be taken into 

consideration, because some authors reported that the exposure of EPNs to agrochemicals 

for a prolonged exposure period may turn their interaction to antagonistic in the meaning of 

low control efficiency against the targeted insect due to reduction ofEPN viability and 

infectivity. 
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